IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v473y2022ics0304380022002241.html
   My bibliography  Save this article

Spatially weak syncronization of spreading pattern between Aedes Albopictus and dengue fever

Author

Listed:
  • Abdalgader, Tarteel
  • Banerjee, Malay
  • Zhang, Lai

Abstract

Understanding the response of dengue fever to climate change remains a global public health concern. A rich array of mathematical models have been proposed to help estimate future population exposure and vulnerability. While these models have proved helpful in modeling mosquito distribution and/or revealing dengue transmission mechanism, they have rarely been incorporated into distribution estimates, particularly at large spatial and temporal scales, to evaluate dengue response to long-term environmental change. Here, we develop a novel mechanistic phenology model that explicitly describes the dengue epidemic process completion (DPEC) according to empirically derived responses to environmental conditions. Further, we apply this model to Aedes albopictus and dengue transmission in mainland China. We validate the model with recorded indigenous dengue cases, and reveal the power of model prediction. Results suggest that future temperature rise promotes geographic expansion of mosquitoes and dengue fever, respectively around 3–15% and 4–10% increment in the area by 2080, compared to nowadays. Results also indicate a more extended season (1–2 months increment) and stronger intensity (up to 4 DEPC increment) of dengue transmission by 2080. Most importantly, our model discloses a weak correlation between the spreading pattern of dengue and Aedes albopictus. Using the spatial expansion trend of mosquito to infer the risk of dengue to the human population is likely to bring about strong bias in spreading direction and/or overestimate dengue distribution. Our study paves a way to provide a useful tool and precise information for predicting dengue dynamics. It also helps design control strategies to prevent arbovirus outbreaks worldwide in areas colonized by Aedes mosquitoes.

Suggested Citation

  • Abdalgader, Tarteel & Banerjee, Malay & Zhang, Lai, 2022. "Spatially weak syncronization of spreading pattern between Aedes Albopictus and dengue fever," Ecological Modelling, Elsevier, vol. 473(C).
  • Handle: RePEc:eee:ecomod:v:473:y:2022:i:c:s0304380022002241
    DOI: 10.1016/j.ecolmodel.2022.110123
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380022002241
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2022.110123?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takuya Iwamura & Adriana Guzman-Holst & Kris A. Murray, 2020. "Accelerating invasion potential of disease vector Aedes aegypti under climate change," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    3. Samir Bhatt & Peter W. Gething & Oliver J. Brady & Jane P. Messina & Andrew W. Farlow & Catherine L. Moyes & John M. Drake & John S. Brownstein & Anne G. Hoen & Osman Sankoh & Monica F. Myers & Dylan , 2013. "The global distribution and burden of dengue," Nature, Nature, vol. 496(7446), pages 504-507, April.
    4. Miranda Chan & Michael A Johansson, 2012. "The Incubation Periods of Dengue Viruses," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-7, November.
    5. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    6. Josef Zapletal & Madhav Erraguntla & Zach N Adelman & Kevin M Myles & Mark A Lawley, 2018. "Impacts of diurnal temperature and larval density on aquatic development of Aedes aegypti," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-16, March.
    7. Erin A Mordecai & Jeremy M Cohen & Michelle V Evans & Prithvi Gudapati & Leah R Johnson & Catherine A Lippi & Kerri Miazgowicz & Courtney C Murdock & Jason R Rohr & Sadie J Ryan & Van Savage & Marta S, 2017. "Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(4), pages 1-18, April.
    8. Yujuan Yue & Xiaobo Liu & Dongsheng Ren & Haixia Wu & Qiyong Liu, 2021. "Spatial Dynamics of Dengue Fever in Mainland China, 2019," IJERPH, MDPI, vol. 18(6), pages 1-12, March.
    9. Kristie Ebi & Stephane Hallegatte & Tom Kram & Nigel Arnell & Timothy Carter & Jae Edmonds & Elmar Kriegler & Ritu Mathur & Brian O’Neill & Keywan Riahi & Harald Winkler & Detlef Vuuren & Timm Zwickel, 2014. "A new scenario framework for climate change research: background, process, and future directions," Climatic Change, Springer, vol. 122(3), pages 363-372, February.
    10. Andrew J. Monaghan & K. M. Sampson & D. F. Steinhoff & K. C. Ernst & K. L. Ebi & B. Jones & M. H. Hayden, 2018. "The potential impacts of 21st century climatic and population changes on human exposure to the virus vector mosquito Aedes aegypti," Climatic Change, Springer, vol. 146(3), pages 487-500, February.
    11. Elmar Kriegler & Jae Edmonds & Stéphane Hallegatte & Kristie Ebi & Tom Kram & Keywan Riahi & Harald Winkler & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared climate policy assumptions," Climatic Change, Springer, vol. 122(3), pages 401-414, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Zhoumin & Xu, Nuo & Khan, Mohsin & Pedersen, Michael & Abdalgader, Tarteel & Zhang, Lai, 2024. "Nonlinear impacts of climate change on dengue transmission in mainland China: Underlying mechanisms and future projection," Ecological Modelling, Elsevier, vol. 492(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Zhoumin & Xu, Nuo & Khan, Mohsin & Pedersen, Michael & Abdalgader, Tarteel & Zhang, Lai, 2024. "Nonlinear impacts of climate change on dengue transmission in mainland China: Underlying mechanisms and future projection," Ecological Modelling, Elsevier, vol. 492(C).
    2. Guillaume Rohat & Johannes Flacke & Hy Dao & Martin Maarseveen, 2018. "Co-use of existing scenario sets to extend and quantify the shared socioeconomic pathways," Climatic Change, Springer, vol. 151(3), pages 619-636, December.
    3. Lena Reimann & Bryan Jones & Nora Bieker & Claudia Wolff & Jeroen C.J.H. Aerts & Athanasios T. Vafeidis, 2023. "Exploring spatial feedbacks between adaptation policies and internal migration patterns due to sea-level rise," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    5. Solberg, Birger & Moiseyev, Alex & Hansen, Jon Øvrum & Horn, Svein Jarle & Øverland, Margareth, 2021. "Wood for food: Economic impacts of sustainable use of forest biomass for salmon feed production in Norway," Forest Policy and Economics, Elsevier, vol. 122(C).
    6. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    7. Speers, Ann E. & Besedin, Elena Y. & Palardy, James E. & Moore, Chris, 2016. "Impacts of climate change and ocean acidification on coral reef fisheries: An integrated ecological–economic model," Ecological Economics, Elsevier, vol. 128(C), pages 33-43.
    8. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    9. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    10. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.
    11. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    12. Phetheet, Jirapat & Hill, Mary C. & Barron, Robert W. & Gray, Benjamin J. & Wu, Hongyu & Amanor-Boadu, Vincent & Heger, Wade & Kisekka, Isaya & Golden, Bill & Rossi, Matthew W., 2021. "Relating agriculture, energy, and water decisions to farm incomes and climate projections using two freeware programs, FEWCalc and DSSAT," Agricultural Systems, Elsevier, vol. 193(C).
    13. Milan Ščasný & Emanuele Massetti & Jan Melichar & Samuel Carrara, 2015. "Quantifying the Ancillary Benefits of the Representative Concentration Pathways on Air Quality in Europe," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 383-415, October.
    14. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    15. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    16. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    17. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    18. Fabien Cremona & Sirje Vilbaste & Raoul-Marie Couture & Peeter Nõges & Tiina Nõges, 2017. "Is the future of large shallow lakes blue-green? Comparing the response of a catchment-lake model chain to climate predictions," Climatic Change, Springer, vol. 141(2), pages 347-361, March.
    19. Govorukha, Kristina & Mayer, Philip & Rübbelke, Dirk & Vögele, Stefan, 2020. "Economic disruptions in long-term energy scenarios – Implications for designing energy policy," Energy, Elsevier, vol. 212(C).
    20. Sferra, Fabio & Krapp, Mario & Roming, Niklas & Schaeffer, Michiel & Malik, Aman & Hare, Bill & Brecha, Robert, 2019. "Towards optimal 1.5° and 2 °C emission pathways for individual countries: A Finland case study," Energy Policy, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:473:y:2022:i:c:s0304380022002241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.