IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i10p1742-d231894.html
   My bibliography  Save this article

Prevalence and Distribution of Dengue Virus in Aedes aegypti in Yogyakarta City before Deployment of Wolbachia Infected Aedes aegypti

Author

Listed:
  • Ayu Rahayu

    (Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia)

  • Utari Saraswati

    (Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia)

  • Endah Supriyati

    (Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia)

  • Dian Aruni Kumalawati

    (Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia)

  • Rio Hermantara

    (Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia)

  • Anwar Rovik

    (Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia)

  • Edwin Widyanto Daniwijaya

    (Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia)

  • Iva Fitriana

    (Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia)

  • Sigit Setyawan

    (Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia)

  • Riris Andono Ahmad

    (Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
    Department of Epidemiology, Biostatistics and Population Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia)

  • Dwi Satria Wardana

    (Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia)

  • Citra Indriani

    (Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
    Department of Epidemiology, Biostatistics and Population Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia)

  • Adi Utarini

    (Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
    Department of Health Policy and Management, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia)

  • Warsito Tantowijoyo

    (Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia)

  • Eggi Arguni

    (Centre of Tropical Medicine, World Mosquito Program Yogyakarta, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
    Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia)

Abstract

Indonesia is one of the countries where dengue infection is prevalent. In this study we measure the prevalence and distribution of dengue virus (DENV) DENV-infected Aedes aegypti in Yogyakarta City, Indonesia, during the wet season when high dengue transmission period occurred, as baseline data before implementation of a Wolbachia-infected Aedes aegypti trial for dengue control. We applied One-Step Multiplex Real Time PCR (RT-PCR) for the type-specific-detection of dengue viruses in field-caught adult Aedes aegypti mosquitoes. In a prospective field study conducted from December 2015 to May 2016, adult female Aedes aegypti were caught from selected areas in Yogyakarta City, and then screened by using RT-PCR. During the survey period, 36 (0.12%) mosquitoes from amongst 29,252 female mosquitoes were positive for a DENV type. In total, 22.20% of dengue-positive mosquitoes were DENV-1, 25% were DENV-2, 17% were DENV-3, but none were positive for DENV-4. This study has provided dengue virus infection prevalence in field-caught Aedes aegypti and its circulating serotype in Yogyakarta City before deployment of Wolbachia-infected Aedes aegypti .

Suggested Citation

  • Ayu Rahayu & Utari Saraswati & Endah Supriyati & Dian Aruni Kumalawati & Rio Hermantara & Anwar Rovik & Edwin Widyanto Daniwijaya & Iva Fitriana & Sigit Setyawan & Riris Andono Ahmad & Dwi Satria Ward, 2019. "Prevalence and Distribution of Dengue Virus in Aedes aegypti in Yogyakarta City before Deployment of Wolbachia Infected Aedes aegypti," IJERPH, MDPI, vol. 16(10), pages 1-12, May.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:10:p:1742-:d:231894
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/10/1742/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/10/1742/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Samir Bhatt & Peter W. Gething & Oliver J. Brady & Jane P. Messina & Andrew W. Farlow & Catherine L. Moyes & John M. Drake & John S. Brownstein & Anne G. Hoen & Osman Sankoh & Monica F. Myers & Dylan , 2013. "The global distribution and burden of dengue," Nature, Nature, vol. 496(7446), pages 504-507, April.
    2. Miranda Chan & Michael A Johansson, 2012. "The Incubation Periods of Dengue Viruses," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-7, November.
    3. Vanessa Racloz & Rebecca Ramsey & Shilu Tong & Wenbiao Hu, 2012. "Surveillance of Dengue Fever Virus: A Review of Epidemiological Models and Early Warning Systems," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 6(5), pages 1-9, May.
    4. A. A. Hoffmann & B. L. Montgomery & J. Popovici & I. Iturbe-Ormaetxe & P. H. Johnson & F. Muzzi & M. Greenfield & M. Durkan & Y. S. Leong & Y. Dong & H. Cook & J. Axford & A. G. Callahan & N. Kenny & , 2011. "Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission," Nature, Nature, vol. 476(7361), pages 454-457, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laith Hussain-Alkhateeb & Tatiana Rivera Ramírez & Axel Kroeger & Ernesto Gozzer & Silvia Runge-Ranzinger, 2021. "Early warning systems (EWSs) for chikungunya, dengue, malaria, yellow fever, and Zika outbreaks: What is the evidence? A scoping review," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 15(9), pages 1-25, September.
    2. Víctor Hugo Peña-García & Omar Triana-Chávez & Ana María Mejía-Jaramillo & Francisco J. Díaz & Andrés Gómez-Palacio & Sair Arboleda-Sánchez, 2016. "Infection Rates by Dengue Virus in Mosquitoes and the Influence of Temperature May Be Related to Different Endemicity Patterns in Three Colombian Cities," IJERPH, MDPI, vol. 13(7), pages 1-16, July.
    3. Auliya A. Suwantika & Angga P. Kautsar & Woro Supadmi & Neily Zakiyah & Rizky Abdulah & Mohammad Ali & Maarten J. Postma, 2020. "Cost-Effectiveness of Dengue Vaccination in Indonesia: Considering Integrated Programs with Wolbachia -Infected Mosquitos and Health Education," IJERPH, MDPI, vol. 17(12), pages 1-15, June.
    4. Abdalgader, Tarteel & Banerjee, Malay & Zhang, Lai, 2022. "Spatially weak syncronization of spreading pattern between Aedes Albopictus and dengue fever," Ecological Modelling, Elsevier, vol. 473(C).
    5. Li Ting Soh & Zoe Ong & Kathryn Vasquez & Irene Chen & Xiaoxi Li & Weixin Niah & Chitra Panchapakesan & Anita Sheldenkar & Shuzhen Sim & Lee Ching Ng & May O. Lwin, 2021. "A Household-Based Survey to Understand Factors Influencing Awareness, Attitudes and Knowledge towards Wolbachia-Aedes Technology," IJERPH, MDPI, vol. 18(22), pages 1-16, November.
    6. Kazi Mizanur Rahman & Yushuf Sharker & Reza Ali Rumi & Mahboob-Ul Islam Khan & Mohammad Sohel Shomik & Muhammad Waliur Rahman & Sk Masum Billah & Mahmudur Rahman & Peter Kim Streatfield & David Harley, 2020. "An Association between Rainy Days with Clinical Dengue Fever in Dhaka, Bangladesh: Findings from a Hospital Based Study," IJERPH, MDPI, vol. 17(24), pages 1-9, December.
    7. Tiago França Melo De Lima & Raquel Martins Lana & Tiago Garcia De Senna Carneiro & Cláudia Torres Codeço & Gabriel Souza Machado & Lucas Saraiva Ferreira & Líliam César De Castro Medeiros & Clodoveu A, 2016. "DengueME: A Tool for the Modeling and Simulation of Dengue Spatiotemporal Dynamics," IJERPH, MDPI, vol. 13(9), pages 1-21, September.
    8. Panja, Madhurima & Chakraborty, Tanujit & Nadim, Sk Shahid & Ghosh, Indrajit & Kumar, Uttam & Liu, Nan, 2023. "An ensemble neural network approach to forecast Dengue outbreak based on climatic condition," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    9. Oswaldo Santos Baquero & Lidia Maria Reis Santana & Francisco Chiaravalloti-Neto, 2018. "Dengue forecasting in São Paulo city with generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-12, April.
    10. Bao-Linh Tran & Wei-Chun Tseng & Chi-Chung Chen & Shu-Yi Liao, 2020. "Estimating the Threshold Effects of Climate on Dengue: A Case Study of Taiwan," IJERPH, MDPI, vol. 17(4), pages 1-17, February.
    11. Rotem Ben-Shachar & Scott Schmidler & Katia Koelle, 2016. "Drivers of Inter-individual Variation in Dengue Viral Load Dynamics," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-26, November.
    12. Prasad Liyanage & Hasitha Tissera & Maquins Sewe & Mikkel Quam & Ananda Amarasinghe & Paba Palihawadana & Annelies Wilder-Smith & Valérie R. Louis & Yesim Tozan & Joacim Rocklöv, 2016. "A Spatial Hierarchical Analysis of the Temporal Influences of the El Niño-Southern Oscillation and Weather on Dengue in Kalutara District, Sri Lanka," IJERPH, MDPI, vol. 13(11), pages 1-21, November.
    13. Kiran Raj Awasthi & Mamata Sherpa Awasthi, 2019. "Reproductive Factors of Dengue and Chlamydia," Global Journal of Reproductive Medicine, Juniper Publishers Inc., vol. 6(4), pages 91-942:6, May.
    14. Sakirul Khan & Sheikh Mohammad Fazle Akbar & Takaaki Yahiro & Mamun Al Mahtab & Kazunori Kimitsuki & Takehiro Hashimoto & Akira Nishizono, 2022. "Dengue Infections during COVID-19 Period: Reflection of Reality or Elusive Data Due to Effect of Pandemic," IJERPH, MDPI, vol. 19(17), pages 1-12, August.
    15. Shengzhang Dong & George Dimopoulos, 2023. "Aedes aegypti Argonaute 2 controls arbovirus infection and host mortality," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    17. Eunha Shim, 2017. "Cost-effectiveness of dengue vaccination in Yucatán, Mexico using a dynamic dengue transmission model," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-17, April.
    18. Dominik Kiemel & Ann-Sophie Helene Kroell & Solène Denolly & Uta Haselmann & Jean-François Bonfanti & Jose Ignacio Andres & Brahma Ghosh & Peggy Geluykens & Suzanne J. F. Kaptein & Lucas Wilken & Piet, 2024. "Pan-serotype dengue virus inhibitor JNJ-A07 targets NS4A-2K-NS4B interaction with NS2B/NS3 and blocks replication organelle formation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    19. Kraisak Kesorn & Phatsavee Ongruk & Jakkrawarn Chompoosri & Atchara Phumee & Usavadee Thavara & Apiwat Tawatsin & Padet Siriyasatien, 2015. "Morbidity Rate Prediction of Dengue Hemorrhagic Fever (DHF) Using the Support Vector Machine and the Aedes aegypti Infection Rate in Similar Climates and Geographical Areas," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-16, May.
    20. Hone-Jay Chu & Bo-Cheng Lin & Ming-Run Yu & Ta-Chien Chan, 2016. "Minimizing Spatial Variability of Healthcare Spatial Accessibility—The Case of a Dengue Fever Outbreak," IJERPH, MDPI, vol. 13(12), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:10:p:1742-:d:231894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.