IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0125049.html
   My bibliography  Save this article

Morbidity Rate Prediction of Dengue Hemorrhagic Fever (DHF) Using the Support Vector Machine and the Aedes aegypti Infection Rate in Similar Climates and Geographical Areas

Author

Listed:
  • Kraisak Kesorn
  • Phatsavee Ongruk
  • Jakkrawarn Chompoosri
  • Atchara Phumee
  • Usavadee Thavara
  • Apiwat Tawatsin
  • Padet Siriyasatien

Abstract

Background: In the past few decades, several researchers have proposed highly accurate prediction models that have typically relied on climate parameters. However, climate factors can be unreliable and can lower the effectiveness of prediction when they are applied in locations where climate factors do not differ significantly. The purpose of this study was to improve a dengue surveillance system in areas with similar climate by exploiting the infection rate in the Aedes aegypti mosquito and using the support vector machine (SVM) technique for forecasting the dengue morbidity rate. Methods and Findings: Areas with high incidence of dengue outbreaks in central Thailand were studied. The proposed framework consisted of the following three major parts: 1) data integration, 2) model construction, and 3) model evaluation. We discovered that the Ae. aegypti female and larvae mosquito infection rates were significantly positively associated with the morbidity rate. Thus, the increasing infection rate of female mosquitoes and larvae led to a higher number of dengue cases, and the prediction performance increased when those predictors were integrated into a predictive model. In this research, we applied the SVM with the radial basis function (RBF) kernel to forecast the high morbidity rate and take precautions to prevent the development of pervasive dengue epidemics. The experimental results showed that the introduced parameters significantly increased the prediction accuracy to 88.37% when used on the test set data, and these parameters led to the highest performance compared to state-of-the-art forecasting models. Conclusions: The infection rates of the Ae. aegypti female mosquitoes and larvae improved the morbidity rate forecasting efficiency better than the climate parameters used in classical frameworks. We demonstrated that the SVM-R-based model has high generalization performance and obtained the highest prediction performance compared to classical models as measured by the accuracy, sensitivity, specificity, and mean absolute error (MAE).

Suggested Citation

  • Kraisak Kesorn & Phatsavee Ongruk & Jakkrawarn Chompoosri & Atchara Phumee & Usavadee Thavara & Apiwat Tawatsin & Padet Siriyasatien, 2015. "Morbidity Rate Prediction of Dengue Hemorrhagic Fever (DHF) Using the Support Vector Machine and the Aedes aegypti Infection Rate in Similar Climates and Geographical Areas," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-16, May.
  • Handle: RePEc:plo:pone00:0125049
    DOI: 10.1371/journal.pone.0125049
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0125049
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0125049&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0125049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael A Johansson & Derek A T Cummings & Gregory E Glass, 2009. "Multiyear Climate Variability and Dengue—El Niño Southern Oscillation, Weather, and Dengue Incidence in Puerto Rico, Mexico, and Thailand: A Longitudinal Data Analysis," PLOS Medicine, Public Library of Science, vol. 6(11), pages 1-9, November.
    2. Vanessa Racloz & Rebecca Ramsey & Shilu Tong & Wenbiao Hu, 2012. "Surveillance of Dengue Fever Virus: A Review of Epidemiological Models and Early Warning Systems," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 6(5), pages 1-9, May.
    3. Elodie Descloux & Morgan Mangeas & Christophe Eugène Menkes & Matthieu Lengaigne & Anne Leroy & Temaui Tehei & Laurent Guillaumot & Magali Teurlai & Ann-Claire Gourinat & Justus Benzler & Anne Pfannst, 2012. "Climate-Based Models for Understanding and Forecasting Dengue Epidemics," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 6(2), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pi Guo & Tao Liu & Qin Zhang & Li Wang & Jianpeng Xiao & Qingying Zhang & Ganfeng Luo & Zhihao Li & Jianfeng He & Yonghui Zhang & Wenjun Ma, 2017. "Developing a dengue forecast model using machine learning: A case study in China," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(10), pages 1-22, October.
    2. Luana Nice da Silva Oliveira & Alexander Itria & Erika Coutinho Lima, 2019. "Cost of illness and program of dengue: A systematic review," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-15, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pablo Méndez-Lázaro & Frank E. Muller-Karger & Daniel Otis & Matthew J. McCarthy & Marisol Peña-Orellana, 2014. "Assessing Climate Variability Effects on Dengue Incidence in San Juan, Puerto Rico," IJERPH, MDPI, vol. 11(9), pages 1-20, September.
    2. Ting-Wu Chuang & Luis Fernando Chaves & Po-Jiang Chen, 2017. "Effects of local and regional climatic fluctuations on dengue outbreaks in southern Taiwan," PLOS ONE, Public Library of Science, vol. 12(6), pages 1-20, June.
    3. Laith Hussain-Alkhateeb & Tatiana Rivera Ramírez & Axel Kroeger & Ernesto Gozzer & Silvia Runge-Ranzinger, 2021. "Early warning systems (EWSs) for chikungunya, dengue, malaria, yellow fever, and Zika outbreaks: What is the evidence? A scoping review," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 15(9), pages 1-25, September.
    4. Asim Anwar & Noman Khan & Muhammad Ayub & Faisal Nawaz & Asim Shah & Antoine Flahault, 2019. "Modeling and Predicting Dengue Incidence in Highly Vulnerable Countries using Panel Data Approach," IJERPH, MDPI, vol. 16(13), pages 1-8, June.
    5. Maneerat, Somsakun & Daudé, Eric, 2016. "A spatial agent-based simulation model of the dengue vector Aedes aegypti to explore its population dynamics in urban areas," Ecological Modelling, Elsevier, vol. 333(C), pages 66-78.
    6. Nicholas G. Reich & Justin Lessler & Krzysztof Sakrejda & Stephen A. Lauer & Sopon Iamsirithaworn & Derek A. T. Cummings, 2016. "Case Study in Evaluating Time Series Prediction Models Using the Relative Mean Absolute Error," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 285-292, July.
    7. Barbara Häsler & Paula Dominguez-Salas & Kimberly Fornace & Maria Garza & Delia Grace & Jonathan Rushton, 2017. "Where food safety meets nutrition outcomes in livestock and fish value chains: a conceptual approach," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(5), pages 1001-1017, October.
    8. Daniel Adyro Martínez-Bello & Antonio López-Quílez & Alexander Torres-Prieto, 2017. "Bayesian dynamic modeling of time series of dengue disease case counts," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(7), pages 1-19, July.
    9. David C Farrow & Logan C Brooks & Sangwon Hyun & Ryan J Tibshirani & Donald S Burke & Roni Rosenfeld, 2017. "A human judgment approach to epidemiological forecasting," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-19, March.
    10. Bernard Bett & Delia Grace & Hu Suk Lee & Johanna Lindahl & Hung Nguyen-Viet & Pham-Duc Phuc & Nguyen Huu Quyen & Tran Anh Tu & Tran Dac Phu & Dang Quang Tan & Vu Sinh Nam, 2019. "Spatiotemporal analysis of historical records (2001–2012) on dengue fever in Vietnam and development of a statistical model for forecasting risk," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-22, November.
    11. Wenting Yang & Jiantong Zhang & Ruolin Ma, 2020. "The Prediction of Infectious Diseases: A Bibliometric Analysis," IJERPH, MDPI, vol. 17(17), pages 1-19, August.
    12. Ayu Rahayu & Utari Saraswati & Endah Supriyati & Dian Aruni Kumalawati & Rio Hermantara & Anwar Rovik & Edwin Widyanto Daniwijaya & Iva Fitriana & Sigit Setyawan & Riris Andono Ahmad & Dwi Satria Ward, 2019. "Prevalence and Distribution of Dengue Virus in Aedes aegypti in Yogyakarta City before Deployment of Wolbachia Infected Aedes aegypti," IJERPH, MDPI, vol. 16(10), pages 1-12, May.
    13. Luong Thi Nguyen & Huy Xuan Le & Dong Thanh Nguyen & Ha Quang Ho & Ting-Wu Chuang, 2020. "Impact of Climate Variability and Abundance of Mosquitoes on Dengue Transmission in Central Vietnam," IJERPH, MDPI, vol. 17(7), pages 1-16, April.
    14. Taynãna C Simões & Cláudia T Codeço & Aline A Nobre & Álvaro E Eiras, 2013. "Modeling the Non-Stationary Climate Dependent Temporal Dynamics of Aedes aegypti," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    15. Panja, Madhurima & Chakraborty, Tanujit & Nadim, Sk Shahid & Ghosh, Indrajit & Kumar, Uttam & Liu, Nan, 2023. "An ensemble neural network approach to forecast Dengue outbreak based on climatic condition," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    16. Suwannapa Ninphanomchai & Chitti Chansang & Yien Ling Hii & Joacim Rocklöv & Pattamaporn Kittayapong, 2014. "Predictiveness of Disease Risk in a Global Outreach Tourist Setting in Thailand Using Meteorological Data and Vector-Borne Disease Incidences," IJERPH, MDPI, vol. 11(10), pages 1-16, October.
    17. Oswaldo Santos Baquero & Lidia Maria Reis Santana & Francisco Chiaravalloti-Neto, 2018. "Dengue forecasting in São Paulo city with generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-12, April.
    18. Sean M Moore & Andrew Monaghan & Kevin S Griffith & Titus Apangu & Paul S Mead & Rebecca J Eisen, 2012. "Improvement of Disease Prediction and Modeling through the Use of Meteorological Ensembles: Human Plague in Uganda," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-11, September.
    19. Chathurika Hettiarachchige & Stefan von Cavallar & Timothy Lynar & Roslyn I Hickson & Manoj Gambhir, 2018. "Risk prediction system for dengue transmission based on high resolution weather data," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-17, December.
    20. Carlos A Bravo-Vega & Juan M Cordovez & Camila Renjifo-Ibáñez & Mauricio Santos-Vega & Mahmood Sasa, 2019. "Estimating snakebite incidence from mathematical models: A test in Costa Rica," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 13(12), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0125049. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.