IDEAS home Printed from https://ideas.repec.org/a/plo/pntd00/0005696.html
   My bibliography  Save this article

Bayesian dynamic modeling of time series of dengue disease case counts

Author

Listed:
  • Daniel Adyro Martínez-Bello
  • Antonio López-Quílez
  • Alexander Torres-Prieto

Abstract

The aim of this study is to model the association between weekly time series of dengue case counts and meteorological variables, in a high-incidence city of Colombia, applying Bayesian hierarchical dynamic generalized linear models over the period January 2008 to August 2015. Additionally, we evaluate the model’s short-term performance for predicting dengue cases. The methodology shows dynamic Poisson log link models including constant or time-varying coefficients for the meteorological variables. Calendar effects were modeled using constant or first- or second-order random walk time-varying coefficients. The meteorological variables were modeled using constant coefficients and first-order random walk time-varying coefficients. We applied Markov Chain Monte Carlo simulations for parameter estimation, and deviance information criterion statistic (DIC) for model selection. We assessed the short-term predictive performance of the selected final model, at several time points within the study period using the mean absolute percentage error. The results showed the best model including first-order random walk time-varying coefficients for calendar trend and first-order random walk time-varying coefficients for the meteorological variables. Besides the computational challenges, interpreting the results implies a complete analysis of the time series of dengue with respect to the parameter estimates of the meteorological effects. We found small values of the mean absolute percentage errors at one or two weeks out-of-sample predictions for most prediction points, associated with low volatility periods in the dengue counts. We discuss the advantages and limitations of the dynamic Poisson models for studying the association between time series of dengue disease and meteorological variables. The key conclusion of the study is that dynamic Poisson models account for the dynamic nature of the variables involved in the modeling of time series of dengue disease, producing useful models for decision-making in public health.Author summary: Time series analysis of dengue disease case counts are currently employed to establish associations between dengue disease and environmental, socioeconomic and climatic variables and to predict the evolution of dengue epidemics. Nowadays there is acceptance that climatic factors like environmental temperature, rainfall and relative humidity modify the behavior of the dengue vectors, affecting the transmission of the disease. Thus, in the absence of vector data, climatic factors are commonly used to input transmission models of dengue disease on several temporal and spatial scales. We applied hierarchical Bayesian dynamic generalized models to dengue diseases case counts in a medium-sized city in Colombia, with constant and time-varying coefficients for calendar trend, and constant and time-varying coefficients for meteorological variables (temperature, rainfall, solar radiation and relative humidity). We selected a final model useful for exploring of the time-varying association between climatic variables and dengue, and the short-term out-of-sample predictions of dengue counts within the study period. We illustrate the modeling process so a data analyst on a multidisciplinary research team could integrate a time series model accounting for the time-varying nature of the data.

Suggested Citation

  • Daniel Adyro Martínez-Bello & Antonio López-Quílez & Alexander Torres-Prieto, 2017. "Bayesian dynamic modeling of time series of dengue disease case counts," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(7), pages 1-19, July.
  • Handle: RePEc:plo:pntd00:0005696
    DOI: 10.1371/journal.pntd.0005696
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosntds/article?id=10.1371/journal.pntd.0005696
    Download Restriction: no

    File URL: https://journals.plos.org/plosntds/article/file?id=10.1371/journal.pntd.0005696&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pntd.0005696?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hai-Yan Xu & Xiuju Fu & Lionel Kim Hock Lee & Stefan Ma & Kee Tai Goh & Jiancheng Wong & Mohamed Salahuddin Habibullah & Gary Kee Khoon Lee & Tian Kuay Lim & Paul Anantharajah Tambyah & Chin Leong Lim, 2014. "Statistical Modeling Reveals the Effect of Absolute Humidity on Dengue in Singapore," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 8(5), pages 1-11, May.
    2. Monica Chiogna and Carlo Gaetan & Carlo Gaetan, 2002. "Dynamic generalized linear models with application to environmental epidemiology," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 51(4), pages 453-468, October.
    3. Vanessa Racloz & Rebecca Ramsey & Shilu Tong & Wenbiao Hu, 2012. "Surveillance of Dengue Fever Virus: A Review of Epidemiological Models and Early Warning Systems," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 6(5), pages 1-9, May.
    4. Alexandra M. Schmidt & João Batista M. Pereira, 2011. "Modelling Time Series of Counts in Epidemiology," International Statistical Review, International Statistical Institute, vol. 79(1), pages 48-69, April.
    5. Shaowei Sang & Shaohua Gu & Peng Bi & Weizhong Yang & Zhicong Yang & Lei Xu & Jun Yang & Xiaobo Liu & Tong Jiang & Haixia Wu & Cordia Chu & Qiyong Liu, 2015. "Predicting Unprecedented Dengue Outbreak Using Imported Cases and Climatic Factors in Guangzhou, 2014," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(5), pages 1-12, May.
    6. Leonhard Knorr‐Held, 1999. "Conditional Prior Proposals in Dynamic Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(1), pages 129-144, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vurukonda Sathish & Siuli Mukhopadhyay & Rashmi Tiwari, 2022. "Autoregressive and moving average models for zero‐inflated count time series," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(2), pages 190-218, May.
    2. Laith Hussain-Alkhateeb & Tatiana Rivera Ramírez & Axel Kroeger & Ernesto Gozzer & Silvia Runge-Ranzinger, 2021. "Early warning systems (EWSs) for chikungunya, dengue, malaria, yellow fever, and Zika outbreaks: What is the evidence? A scoping review," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 15(9), pages 1-25, September.
    3. Kraisak Kesorn & Phatsavee Ongruk & Jakkrawarn Chompoosri & Atchara Phumee & Usavadee Thavara & Apiwat Tawatsin & Padet Siriyasatien, 2015. "Morbidity Rate Prediction of Dengue Hemorrhagic Fever (DHF) Using the Support Vector Machine and the Aedes aegypti Infection Rate in Similar Climates and Geographical Areas," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-16, May.
    4. Elorm Donkor & Matthew Kelly & Cecilia Eliason & Charles Amotoh & Darren J. Gray & Archie C. A. Clements & Kinley Wangdi, 2021. "A Bayesian Spatio-Temporal Analysis of Malaria in the Greater Accra Region of Ghana from 2015 to 2019," IJERPH, MDPI, vol. 18(11), pages 1-15, June.
    5. Powers, Stephanie & Gerlach, Richard & Stamey, James, 2010. "Bayesian variable selection for Poisson regression with underreported responses," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3289-3299, December.
    6. Barbara Häsler & Paula Dominguez-Salas & Kimberly Fornace & Maria Garza & Delia Grace & Jonathan Rushton, 2017. "Where food safety meets nutrition outcomes in livestock and fish value chains: a conceptual approach," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(5), pages 1001-1017, October.
    7. David C Farrow & Logan C Brooks & Sangwon Hyun & Ryan J Tibshirani & Donald S Burke & Roni Rosenfeld, 2017. "A human judgment approach to epidemiological forecasting," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-19, March.
    8. Jue Tao Lim & Borame Sue Lee Dickens & Lawrence Zheng Xiong Chew & Esther Li Wen Choo & Joel Ruihan Koo & Joel Aik & Lee Ching Ng & Alex R Cook, 2020. "Impact of sars-cov-2 interventions on dengue transmission," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(10), pages 1-17, October.
    9. Håvard Rue & Ingelin Steinsland & Sveinung Erland, 2004. "Approximating hidden Gaussian Markov random fields," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(4), pages 877-892, November.
    10. Riccardo Borgoni & Francesco Billari, 2003. "Bayesian spatial analysis of demographic survey data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 8(3), pages 61-92.
    11. Marco Bonetti & Ugofilippo Basellini, 2021. "Epilocal: A real-time tool for local epidemic monitoring," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 44(12), pages 307-332.
    12. Congdon, Peter, 2006. "A model for non-parametric spatially varying regression effects," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 422-445, January.
    13. Wenting Yang & Jiantong Zhang & Ruolin Ma, 2020. "The Prediction of Infectious Diseases: A Bibliometric Analysis," IJERPH, MDPI, vol. 17(17), pages 1-19, August.
    14. Duncan Lee & Gavin Shaddick, 2007. "Time-Varying Coefficient Models for the Analysis of Air Pollution and Health Outcome Data," Biometrics, The International Biometric Society, vol. 63(4), pages 1253-1261, December.
    15. Chiranjit Dutta & Nalini Ravishanker & Sumanta Basu, 2022. "Modeling Multivariate Positive-Valued Time Series Using R-INLA," Papers 2206.05374, arXiv.org, revised Jul 2022.
    16. Jue Tao Lim & Borame Sue Dickens & Sun Haoyang & Ng Lee Ching & Alex R Cook, 2020. "Inference on dengue epidemics with Bayesian regime switching models," PLOS Computational Biology, Public Library of Science, vol. 16(5), pages 1-15, May.
    17. Yujuan Yue & Qiyong Liu, 2019. "Exploring Epidemiological Characteristics of Domestic Imported Dengue Fever in Mainland China, 2014–2018," IJERPH, MDPI, vol. 16(20), pages 1-10, October.
    18. Haogao Gu & Ross Ka-Kit Leung & Qinlong Jing & Wangjian Zhang & Zhicong Yang & Jiahai Lu & Yuantao Hao & Dingmei Zhang, 2016. "Meteorological Factors for Dengue Fever Control and Prevention in South China," IJERPH, MDPI, vol. 13(9), pages 1-12, August.
    19. Vinicius Mayrink & Dani Gamerman, 2009. "On computational aspects of Bayesian spatial models: influence of the neighboring structure in the efficiency of MCMC algorithms," Computational Statistics, Springer, vol. 24(4), pages 641-669, December.
    20. Lopes, Hedibert Freitas & Gamerman, Dani & Salazar, Esther, 2011. "Generalized spatial dynamic factor models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1319-1330, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pntd00:0005696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosntds (email available below). General contact details of provider: https://journals.plos.org/plosntds/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.