IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v290y2016icp1-8.html
   My bibliography  Save this article

Analysis of the vectorial capacity of vector-borne diseases using moment-generating functions

Author

Listed:
  • Villela, Daniel A.M.

Abstract

The vectorial capacity of a mosquito species that is a disease-vector indicates the expected number of infectious bites given by all mosquitoes infected from biting a single infected human individual, assuming perfect transmissions between humans and vectors. Assessing this number for different transmitting species of the same disease, such as dengue or malaria, expresses how capable these species are of spreading the disease. We describe the vectorial capacity as a random process and present a model for analyzing its probability distribution. Our stochastic model permits us to obtain the moment-generating function for the distribution of the vectorial capacity and, under reasonable assumptions, the probability distribution itself. A stochastic modeling framework is helpful for analyzing the dynamics of disease spreading, such as when performing sensitivity analysis.

Suggested Citation

  • Villela, Daniel A.M., 2016. "Analysis of the vectorial capacity of vector-borne diseases using moment-generating functions," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 1-8.
  • Handle: RePEc:eee:apmaco:v:290:y:2016:i:c:p:1-8
    DOI: 10.1016/j.amc.2016.05.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300316303356
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2016.05.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ball, Frank & Donnelly, Peter, 1995. "Strong approximations for epidemic models," Stochastic Processes and their Applications, Elsevier, vol. 55(1), pages 1-21, January.
    2. Miranda Chan & Michael A Johansson, 2012. "The Incubation Periods of Dengue Viruses," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-7, November.
    3. Daniel A M Villela & Claudia T Codeço & Felipe Figueiredo & Gabriela A Garcia & Rafael Maciel-de-Freitas & Claudio J Struchiner, 2015. "A Bayesian Hierarchical Model for Estimation of Abundance and Spatial Density of Aedes aegypti," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zan, Yongli, 2018. "DSIR double-rumors spreading model in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 191-202.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paul C. Fenema & A. Georges L. Romme, 2020. "Latent organizing for responding to emergencies: foundations for research," Journal of Organization Design, Springer;Organizational Design Community, vol. 9(1), pages 1-16, December.
    2. Tay, Chai Jian & Fakhruddin, Muhammad & Fauzi, Ilham Saiful & Teh, Su Yean & Syamsuddin, Muhammad & Nuraini, Nuning & Soewono, Edy, 2022. "Dengue epidemiological characteristic in Kuala Lumpur and Selangor, Malaysia," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 489-504.
    3. Víctor Hugo Peña-García & Omar Triana-Chávez & Ana María Mejía-Jaramillo & Francisco J. Díaz & Andrés Gómez-Palacio & Sair Arboleda-Sánchez, 2016. "Infection Rates by Dengue Virus in Mosquitoes and the Influence of Temperature May Be Related to Different Endemicity Patterns in Three Colombian Cities," IJERPH, MDPI, vol. 13(7), pages 1-16, July.
    4. Simon, Matthieu, 2020. "SIR epidemics with stochastic infectious periods," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4252-4274.
    5. Barbour, A. D. & Utev, Sergey, 2004. "Approximating the Reed-Frost epidemic process," Stochastic Processes and their Applications, Elsevier, vol. 113(2), pages 173-197, October.
    6. Abidemi, A. & Abd Aziz, M.I. & Ahmad, R., 2020. "Vaccination and vector control effect on dengue virus transmission dynamics: Modelling and simulation," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    7. Brito da Cruz, Artur M.C. & Rodrigues, Helena Sofia, 2021. "Personal protective strategies for dengue disease: Simulations in two coexisting virus serotypes scenarios," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 254-267.
    8. Judicaël Obame-Nkoghe & Boris Kevin Makanga & Sylvie Brizard Zongo & Aubin Armel Koumba & Prune Komba & Neil-Michel Longo-Pendy & Franck Mounioko & Rodolphe Akone-Ella & Lynda Chancelya Nkoghe-Nkoghe , 2023. "Urban Green Spaces and Vector-Borne Disease Risk in Africa: The Case of an Unclean Forested Park in Libreville (Gabon, Central Africa)," IJERPH, MDPI, vol. 20(10), pages 1-17, May.
    9. Yoon Ling Cheong & Katrin Burkart & Pedro J. Leitão & Tobia Lakes, 2013. "Assessing Weather Effects on Dengue Disease in Malaysia," IJERPH, MDPI, vol. 10(12), pages 1-16, November.
    10. Claude Lefe`vre & Sergey Utev, 1999. "Branching Approximation for the Collective Epidemic Model," Methodology and Computing in Applied Probability, Springer, vol. 1(2), pages 211-228, September.
    11. Abdalgader, Tarteel & Banerjee, Malay & Zhang, Lai, 2022. "Spatially weak syncronization of spreading pattern between Aedes Albopictus and dengue fever," Ecological Modelling, Elsevier, vol. 473(C).
    12. Johannes Müler & Volker Hösel, 2007. "Estimating the Tracing Probability from Contact History at the Onset of an Epidemic," Mathematical Population Studies, Taylor & Francis Journals, vol. 14(4), pages 211-236, November.
    13. Terrazas-Santamaria Diana & Mendoza-Palacios Saul & Berasaluce-Iza Julen, 2023. "An Alternative Approach to Frequency of Patent Technology Codes: The Case of Renewable Energy Generation," Economics - The Open-Access, Open-Assessment Journal, De Gruyter, vol. 17(1), pages 1-14, January.
    14. Ball, Frank & Neal, Peter, 2003. "The great circle epidemic model," Stochastic Processes and their Applications, Elsevier, vol. 107(2), pages 233-268, October.
    15. Kazi Mizanur Rahman & Yushuf Sharker & Reza Ali Rumi & Mahboob-Ul Islam Khan & Mohammad Sohel Shomik & Muhammad Waliur Rahman & Sk Masum Billah & Mahmudur Rahman & Peter Kim Streatfield & David Harley, 2020. "An Association between Rainy Days with Clinical Dengue Fever in Dhaka, Bangladesh: Findings from a Hospital Based Study," IJERPH, MDPI, vol. 17(24), pages 1-9, December.
    16. Mateus C, Rafael & Zuluaga, Susana Alvarez & Orozco, Mariajose Franco & Marín, Paula Alejandra Escudero, 2021. "Modeling the propagation of the Dengue, Zika and Chikungunya virus in the city of Bello using Agent-Based Modeling and Simulation," OSF Preprints wmxzd, Center for Open Science.
    17. Demiris, Nikolaos & Kypraios, Theodore & Smith, L. Vanessa, 2012. "On the epidemic of financial crises," MPRA Paper 46693, University Library of Munich, Germany.
    18. Ayu Rahayu & Utari Saraswati & Endah Supriyati & Dian Aruni Kumalawati & Rio Hermantara & Anwar Rovik & Edwin Widyanto Daniwijaya & Iva Fitriana & Sigit Setyawan & Riris Andono Ahmad & Dwi Satria Ward, 2019. "Prevalence and Distribution of Dengue Virus in Aedes aegypti in Yogyakarta City before Deployment of Wolbachia Infected Aedes aegypti," IJERPH, MDPI, vol. 16(10), pages 1-12, May.
    19. Chen, Zezhun & Dassios, Angelos & Kuan, Valerie & Lim, Jia Wei & Qu, Yan & Surya, Budhi & Zhao, Hongbiao, 2021. "A two-phase dynamic contagion model for COVID-19," LSE Research Online Documents on Economics 105064, London School of Economics and Political Science, LSE Library.
    20. Clancy, Damian & O'Neill, Philip, 1998. "Approximation of epidemics by inhomogeneous birth-and-death processes," Stochastic Processes and their Applications, Elsevier, vol. 73(2), pages 233-245, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:290:y:2016:i:c:p:1-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.