IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0138947.html
   My bibliography  Save this article

Dynamics of Competition between Subnetworks of Spiking Neuronal Networks in the Balanced State

Author

Listed:
  • Fereshteh Lagzi
  • Stefan Rotter

Abstract

We explore and analyze the nonlinear switching dynamics of neuronal networks with non-homogeneous connectivity. The general significance of such transient dynamics for brain function is unclear; however, for instance decision-making processes in perception and cognition have been implicated with it. The network under study here is comprised of three subnetworks of either excitatory or inhibitory leaky integrate-and-fire neurons, of which two are of the same type. The synaptic weights are arranged to establish and maintain a balance between excitation and inhibition in case of a constant external drive. Each subnetwork is randomly connected, where all neurons belonging to a particular population have the same in-degree and the same out-degree. Neurons in different subnetworks are also randomly connected with the same probability; however, depending on the type of the pre-synaptic neuron, the synaptic weight is scaled by a factor. We observed that for a certain range of the “within” versus “between” connection weights (bifurcation parameter), the network activation spontaneously switches between the two sub-networks of the same type. This kind of dynamics has been termed “winnerless competition”, which also has a random component here. In our model, this phenomenon is well described by a set of coupled stochastic differential equations of Lotka-Volterra type that imply a competition between the subnetworks. The associated mean-field model shows the same dynamical behavior as observed in simulations of large networks comprising thousands of spiking neurons. The deterministic phase portrait is characterized by two attractors and a saddle node, its stochastic component is essentially given by the multiplicative inherent noise of the system. We find that the dwell time distribution of the active states is exponential, indicating that the noise drives the system randomly from one attractor to the other. A similar model for a larger number of populations might suggest a general approach to study the dynamics of interacting populations of spiking networks.

Suggested Citation

  • Fereshteh Lagzi & Stefan Rotter, 2015. "Dynamics of Competition between Subnetworks of Spiking Neuronal Networks in the Balanced State," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-28, September.
  • Handle: RePEc:plo:pone00:0138947
    DOI: 10.1371/journal.pone.0138947
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138947
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0138947&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0138947?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mark D McDonnell & Lawrence M Ward, 2014. "Small Modifications to Network Topology Can Induce Stochastic Bistable Spiking Dynamics in a Balanced Cortical Model," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-21, April.
    2. Tom Tetzlaff & Moritz Helias & Gaute T Einevoll & Markus Diesmann, 2012. "Decorrelation of Neural-Network Activity by Inhibitory Feedback," PLOS Computational Biology, Public Library of Science, vol. 8(8), pages 1-29, August.
    3. Sen Song & Per Jesper Sjöström & Markus Reigl & Sacha Nelson & Dmitri B Chklovskii, 2005. "Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits," PLOS Biology, Public Library of Science, vol. 3(3), pages 1-1, March.
    4. Daniel Martí & Gustavo Deco & Maurizio Mattia & Guido Gigante & Paolo Del Giudice, 2008. "A Fluctuation-Driven Mechanism for Slow Decision Processes in Reverberant Networks," PLOS ONE, Public Library of Science, vol. 3(7), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas H Hraha & Matthew J Westacott & Marina Pozzoli & Aleena M Notary & P Mason McClatchey & Richard K P Benninger, 2014. "Phase Transitions in the Multi-cellular Regulatory Behavior of Pancreatic Islet Excitability," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-14, September.
    2. Sacha Jennifer van Albada & Moritz Helias & Markus Diesmann, 2015. "Scalability of Asynchronous Networks Is Limited by One-to-One Mapping between Effective Connectivity and Correlations," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-37, September.
    3. Jimok Kim & Richard W Tsien & Bradley E Alger, 2012. "An Improved Test for Detecting Multiplicative Homeostatic Synaptic Scaling," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
    4. Vicente Reyes-Puerta & Suam Kim & Jyh-Jang Sun & Barbara Imbrosci & Werner Kilb & Heiko J Luhmann, 2015. "High Stimulus-Related Information in Barrel Cortex Inhibitory Interneurons," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-32, June.
    5. Christoph Hartmann & Andreea Lazar & Bernhard Nessler & Jochen Triesch, 2015. "Where’s the Noise? Key Features of Spontaneous Activity and Neural Variability Arise through Learning in a Deterministic Network," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-35, December.
    6. Jannis Schuecker & Maximilian Schmidt & Sacha J van Albada & Markus Diesmann & Moritz Helias, 2017. "Fundamental Activity Constraints Lead to Specific Interpretations of the Connectome," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-25, February.
    7. Vladimir V Klinshov & Jun-nosuke Teramae & Vladimir I Nekorkin & Tomoki Fukai, 2014. "Dense Neuron Clustering Explains Connectivity Statistics in Cortical Microcircuits," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-12, April.
    8. Jian K Liu & Zhen-Su She, 2009. "A Spike-Timing Pattern Based Neural Network Model for the Study of Memory Dynamics," PLOS ONE, Public Library of Science, vol. 4(7), pages 1-8, July.
    9. Ritwik K Niyogi & KongFatt Wong-Lin, 2013. "Dynamic Excitatory and Inhibitory Gain Modulation Can Produce Flexible, Robust and Optimal Decision-making," PLOS Computational Biology, Public Library of Science, vol. 9(6), pages 1-20, June.
    10. Matthias Schultze-Kraft & Markus Diesmann & Sonja Grün & Moritz Helias, 2013. "Noise Suppression and Surplus Synchrony by Coincidence Detection," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-15, April.
    11. Naoki Hiratani & Tomoki Fukai, 2015. "Mixed Signal Learning by Spike Correlation Propagation in Feedback Inhibitory Circuits," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-36, April.
    12. Guido Gigante & Maurizio Mattia & Jochen Braun & Paolo Del Giudice, 2009. "Bistable Perception Modeled as Competing Stochastic Integrations at Two Levels," PLOS Computational Biology, Public Library of Science, vol. 5(7), pages 1-9, July.
    13. Moritz Helias & Tom Tetzlaff & Markus Diesmann, 2014. "The Correlation Structure of Local Neuronal Networks Intrinsically Results from Recurrent Dynamics," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-21, January.
    14. Takuya Ito & Scott L Brincat & Markus Siegel & Ravi D Mill & Biyu J He & Earl K Miller & Horacio G Rotstein & Michael W Cole, 2020. "Task-evoked activity quenches neural correlations and variability across cortical areas," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-39, August.
    15. Brendan Chambers & Jason N MacLean, 2016. "Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-23, August.
    16. Fabiano Baroni & Joaquín J Torres & Pablo Varona, 2010. "History-Dependent Excitability as a Single-Cell Substrate of Transient Memory for Information Discrimination," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-19, December.
    17. Baktash Babadi & L F Abbott, 2016. "Stability and Competition in Multi-spike Models of Spike-Timing Dependent Plasticity," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-26, March.
    18. Mengchen Zhu & Christopher J Rozell, 2015. "Modeling Inhibitory Interneurons in Efficient Sensory Coding Models," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-22, July.
    19. Hannah Bos & Markus Diesmann & Moritz Helias, 2016. "Identifying Anatomical Origins of Coexisting Oscillations in the Cortical Microcircuit," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-34, October.
    20. Leo Kozachkov & Mikael Lundqvist & Jean-Jacques Slotine & Earl K Miller, 2020. "Achieving stable dynamics in neural circuits," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-15, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0138947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.