IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007659.html
   My bibliography  Save this article

Achieving stable dynamics in neural circuits

Author

Listed:
  • Leo Kozachkov
  • Mikael Lundqvist
  • Jean-Jacques Slotine
  • Earl K Miller

Abstract

The brain consists of many interconnected networks with time-varying, partially autonomous activity. There are multiple sources of noise and variation yet activity has to eventually converge to a stable, reproducible state (or sequence of states) for its computations to make sense. We approached this problem from a control-theory perspective by applying contraction analysis to recurrent neural networks. This allowed us to find mechanisms for achieving stability in multiple connected networks with biologically realistic dynamics, including synaptic plasticity and time-varying inputs. These mechanisms included inhibitory Hebbian plasticity, excitatory anti-Hebbian plasticity, synaptic sparsity and excitatory-inhibitory balance. Our findings shed light on how stable computations might be achieved despite biological complexity. Crucially, our analysis is not limited to analyzing the stability of fixed geometric objects in state space (e.g points, lines, planes), but rather the stability of state trajectories which may be complex and time-varying.Author summary: Stability is essential for any complex system including, and perhaps especially, the brain. The brain’s neural networks are highly dynamic and noisy. Activity fluctuates from moment to moment and can be highly variable. Yet it is critical that these networks reach a consistent state (or sequence of states) for their computations to make sense. Failures in stability have consequences ranging from mild (e.g incorrect decisions) to severe (disease states). In this paper we use tools from control theory and dynamical systems theory to find mechanisms which produce stability in recurrent neural networks (RNNs). We show that a kind of “unlearning” (inhibitory Hebbian and excitatory anti-Hebbian plasticity), balance of excitation and inhibition, and sparse anatomical connectivity all lead to stability. Crucially, we focus on the stability of neural trajectories. This is different from traditional studies of stability of fixed points or planes. We do not assess what trajectories our networks will follow but, rather, when these trajectories will all converge towards each other to achieve stability.

Suggested Citation

  • Leo Kozachkov & Mikael Lundqvist & Jean-Jacques Slotine & Earl K Miller, 2020. "Achieving stable dynamics in neural circuits," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-15, August.
  • Handle: RePEc:plo:pcbi00:1007659
    DOI: 10.1371/journal.pcbi.1007659
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007659
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007659&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007659?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Wehr & Anthony M. Zador, 2003. "Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex," Nature, Nature, vol. 426(6965), pages 442-446, November.
    2. Sen Song & Per Jesper Sjöström & Markus Reigl & Sacha Nelson & Dmitri B Chklovskii, 2005. "Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits," PLOS Biology, Public Library of Science, vol. 3(3), pages 1-1, March.
    3. Yousheng Shu & Andrea Hasenstaub & David A. McCormick, 2003. "Turning on and off recurrent balanced cortical activity," Nature, Nature, vol. 423(6937), pages 288-293, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alon Poleg-Polsky & Jeffrey S Diamond, 2011. "Imperfect Space Clamp Permits Electrotonic Interactions between Inhibitory and Excitatory Synaptic Conductances, Distorting Voltage Clamp Recordings," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-11, April.
    2. Martin Boerlin & Christian K Machens & Sophie Denève, 2013. "Predictive Coding of Dynamical Variables in Balanced Spiking Networks," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-16, November.
    3. Deng, Liyuan & Huo, Siyu & Chen, Aihua & Liu, Zonghua, 2024. "Coupling resonance of signal responses induced by heterogeneously mixed positive and negative couplings in cognitive subnetworks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    4. Ashok Litwin-Kumar & Anne-Marie M Oswald & Nathaniel N Urban & Brent Doiron, 2011. "Balanced Synaptic Input Shapes the Correlation between Neural Spike Trains," PLOS Computational Biology, Public Library of Science, vol. 7(12), pages 1-14, December.
    5. Margot C Bjoring & C Daniel Meliza, 2019. "A low-threshold potassium current enhances sparseness and reliability in a model of avian auditory cortex," PLOS Computational Biology, Public Library of Science, vol. 15(1), pages 1-20, January.
    6. Matteo Farinella & Daniel T Ruedt & Padraig Gleeson & Frederic Lanore & R Angus Silver, 2014. "Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-21, April.
    7. David Pérez-González & Olga Hernández & Ellen Covey & Manuel S Malmierca, 2012. "GABAA-Mediated Inhibition Modulates Stimulus-Specific Adaptation in the Inferior Colliculus," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-14, March.
    8. Christian Meisel & Andreas Klaus & Christian Kuehn & Dietmar Plenz, 2015. "Critical Slowing Down Governs the Transition to Neuron Spiking," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-20, February.
    9. Catalina Vich & Rafel Prohens & Antonio E. Teruel & Antoni Guillamon, 2020. "Estimation of Synaptic Activity during Neuronal Oscillations," Mathematics, MDPI, vol. 8(12), pages 1-22, December.
    10. Balázs Ujfalussy & Tamás Kiss & Péter Érdi, 2009. "Parallel Computational Subunits in Dentate Granule Cells Generate Multiple Place Fields," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-16, September.
    11. Robert B Levy & Alex D Reyes, 2011. "Coexistence of Lateral and Co-Tuned Inhibitory Configurations in Cortical Networks," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-14, October.
    12. Franz X. Mittermaier & Thilo Kalbhenn & Ran Xu & Julia Onken & Katharina Faust & Thomas Sauvigny & Ulrich W. Thomale & Angela M. Kaindl & Martin Holtkamp & Sabine Grosser & Pawel Fidzinski & Matthias , 2024. "Membrane potential states gate synaptic consolidation in human neocortical tissue," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Manoj Kumar & Gregory Handy & Stylianos Kouvaros & Yanjun Zhao & Lovisa Ljungqvist Brinson & Eric Wei & Brandon Bizup & Brent Doiron & Thanos Tzounopoulos, 2023. "Cell-type-specific plasticity of inhibitory interneurons in the rehabilitation of auditory cortex after peripheral damage," Nature Communications, Nature, vol. 14(1), pages 1-23, December.
    14. Tomáš Hromádka & Michael R DeWeese & Anthony M Zador, 2008. "Sparse Representation of Sounds in the Unanesthetized Auditory Cortex," PLOS Biology, Public Library of Science, vol. 6(1), pages 1-14, January.
    15. Jimok Kim & Richard W Tsien & Bradley E Alger, 2012. "An Improved Test for Detecting Multiplicative Homeostatic Synaptic Scaling," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
    16. Eunhye Cho & Jii Kwon & Gyuwon Lee & Jiwoo Shin & Hyunsu Lee & Suk-Ho Lee & Chun Kee Chung & Jaeyoung Yoon & Won-Kyung Ho, 2024. "Net synaptic drive of fast-spiking interneurons is inverted towards inhibition in human FCD I epilepsy," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    17. Kyriaki Sidiropoulou & Panayiota Poirazi, 2012. "Predictive Features of Persistent Activity Emergence in Regular Spiking and Intrinsic Bursting Model Neurons," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-15, April.
    18. Christoph Hartmann & Andreea Lazar & Bernhard Nessler & Jochen Triesch, 2015. "Where’s the Noise? Key Features of Spontaneous Activity and Neural Variability Arise through Learning in a Deterministic Network," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-35, December.
    19. Mizusaki, Beatriz E.P. & Agnes, Everton J. & Erichsen, Rubem & Brunnet, Leonardo G., 2017. "Learning and retrieval behavior in recurrent neural networks with pre-synaptic dependent homeostatic plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 279-286.
    20. Vladimir V Klinshov & Jun-nosuke Teramae & Vladimir I Nekorkin & Tomoki Fukai, 2014. "Dense Neuron Clustering Explains Connectivity Statistics in Cortical Microcircuits," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-12, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.