IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005078.html
   My bibliography  Save this article

Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks

Author

Listed:
  • Brendan Chambers
  • Jason N MacLean

Abstract

Linking synaptic connectivity to dynamics is key to understanding information processing in neocortex. Circuit dynamics emerge from complex interactions of interconnected neurons, necessitating that links between connectivity and dynamics be evaluated at the network level. Here we map propagating activity in large neuronal ensembles from mouse neocortex and compare it to a recurrent network model, where connectivity can be precisely measured and manipulated. We find that a dynamical feature dominates statistical descriptions of propagating activity for both neocortex and the model: convergent clusters comprised of fan-in triangle motifs, where two input neurons are themselves connected. Fan-in triangles coordinate the timing of presynaptic inputs during ongoing activity to effectively generate postsynaptic spiking. As a result, paradoxically, fan-in triangles dominate the statistics of spike propagation even in randomly connected recurrent networks. Interplay between higher-order synaptic connectivity and the integrative properties of neurons constrains the structure of network dynamics and shapes the routing of information in neocortex.Author Summary: Active networks of neurons exhibit beyond-pairwise dynamical features. In this work, we identify a canonical higher-order correlation in network dynamics and trace its emergence to synaptic integration. We find that temporally coordinated firing preferentially occurs at sites of fan-in triangles—a synaptic motif which coordinates presynaptic timing, leading to greater likelihood of postsynaptic spiking. The influence of fan-in clustering leads to the surprising emergence of non-random routing of spiking in random synaptic networks. When synaptic weights are made artificially stronger in simulation, so that cooperative input is less crucial, dynamics are no longer dominated by fan-in triangles but instead more closely reflect the random synaptic network. Thus, the emergence of fan-in clustering in maps of synaptic recruitment is a collective property of individually weak connections in neuronal networks. Because higher-order interactions are necessary to shape the timing of presynaptic inputs, activity does not propagate uniformly through the synaptic network. Like water finding the deepest channels as it flows downhill, spiking activity follows the path of least resistance and is routed through triplet motifs of connectivity. These results argue that clustered fan-in triangles are a canonical network motif and mechanism for spike routing in local neocortical circuitry.

Suggested Citation

  • Brendan Chambers & Jason N MacLean, 2016. "Higher-Order Synaptic Interactions Coordinate Dynamics in Recurrent Networks," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-23, August.
  • Handle: RePEc:plo:pcbi00:1005078
    DOI: 10.1371/journal.pcbi.1005078
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005078
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005078&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Romain Daniel Cazé & Mark Humphries & Boris Gutkin, 2013. "Passive Dendrites Enable Single Neurons to Compute Linearly Non-separable Functions," PLOS Computational Biology, Public Library of Science, vol. 9(2), pages 1-15, February.
    2. Mark D Humphries & Kevin Gurney, 2008. "Network ‘Small-World-Ness’: A Quantitative Method for Determining Canonical Network Equivalence," PLOS ONE, Public Library of Science, vol. 3(4), pages 1-10, April.
    3. Sen Song & Per Jesper Sjöström & Markus Reigl & Sacha Nelson & Dmitri B Chklovskii, 2005. "Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits," PLOS Biology, Public Library of Science, vol. 3(3), pages 1-1, March.
    4. Adam S Shai & Costas A Anastassiou & Matthew E Larkum & Christof Koch, 2015. "Physiology of Layer 5 Pyramidal Neurons in Mouse Primary Visual Cortex: Coincidence Detection through Bursting," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-18, March.
    5. Sinisa Pajevic & Dietmar Plenz, 2009. "Efficient Network Reconstruction from Dynamical Cascades Identifies Small-World Topology of Neuronal Avalanches," PLOS Computational Biology, Public Library of Science, vol. 5(1), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Avena-Koenigsberger & Xiaoran Yan & Artemy Kolchinsky & Martijn P van den Heuvel & Patric Hagmann & Olaf Sporns, 2019. "A spectrum of routing strategies for brain networks," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-24, March.
    2. Williams-García, Rashid V. & Nicolis, Stam, 2022. "Route to chaos in a branching model of neural network dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    3. Mark D Humphries & Javier A Caballero & Mat Evans & Silvia Maggi & Abhinav Singh, 2021. "Spectral estimation for detecting low-dimensional structure in networks using arbitrary null models," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-22, July.
    4. Abbasiharofteh, Milad & Kogler, Dieter F. & Lengyel, Balázs, 2023. "Atypical combinations of technologies in regional co-inventor networks," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 52(10), pages 1-1.
    5. Ramirez-Arellano, Aldo & Hernández-Simón, Luis Manuel & Bory-Reyes, Juan, 2020. "A box-covering Tsallis information dimension and non-extensive property of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    6. Aleenajitpong, Natdanai & Leemakdej, Arnat, 2021. "Venture Capital Networks in Southeast Asia: Network characteristics and cohesive subgroups," International Review of Financial Analysis, Elsevier, vol. 76(C).
    7. Jimok Kim & Richard W Tsien & Bradley E Alger, 2012. "An Improved Test for Detecting Multiplicative Homeostatic Synaptic Scaling," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
    8. Mikail Rubinov & Olaf Sporns & Jean-Philippe Thivierge & Michael Breakspear, 2011. "Neurobiologically Realistic Determinants of Self-Organized Criticality in Networks of Spiking Neurons," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-14, June.
    9. Christoph Hartmann & Andreea Lazar & Bernhard Nessler & Jochen Triesch, 2015. "Where’s the Noise? Key Features of Spontaneous Activity and Neural Variability Arise through Learning in a Deterministic Network," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-35, December.
    10. Mayerhoffer, Daniel & Schulz-Gebhard, Jan, 2023. "Social segregation, misperceptions, and emergent cyclical choice patterns," BERG Working Paper Series 186, Bamberg University, Bamberg Economic Research Group.
    11. Wu Zhu & Jian-an Fang & Yang Tang & Wenbing Zhang & Wei Du, 2012. "Digital IIR Filters Design Using Differential Evolution Algorithm with a Controllable Probabilistic Population Size," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    12. Yan Li & Carol Alexander & Michael Coulon & Istvan Kiss, 2025. "Trade Dynamics of the Global Dry Bulk Shipping Network," Papers 2502.00877, arXiv.org.
    13. Suchin S Gururangan & Alexander J Sadovsky & Jason N MacLean, 2014. "Analysis of Graph Invariants in Functional Neocortical Circuitry Reveals Generalized Features Common to Three Areas of Sensory Cortex," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-12, July.
    14. Vladimir V Klinshov & Jun-nosuke Teramae & Vladimir I Nekorkin & Tomoki Fukai, 2014. "Dense Neuron Clustering Explains Connectivity Statistics in Cortical Microcircuits," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-12, April.
    15. Jian K Liu & Zhen-Su She, 2009. "A Spike-Timing Pattern Based Neural Network Model for the Study of Memory Dynamics," PLOS ONE, Public Library of Science, vol. 4(7), pages 1-8, July.
    16. Heng Chen, 2023. "A lexical network approach to second language development," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-9, December.
    17. Weiwei Yan & Xin Wen & Yin Zhang & Sonali Kudva & Qian Liu, 2023. "The dynamics of Q&A in academic social networking sites: insights from participants, interaction network, response time, and discipline differences," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1895-1922, March.
    18. Naoki Hiratani & Tomoki Fukai, 2015. "Mixed Signal Learning by Spike Correlation Propagation in Feedback Inhibitory Circuits," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-36, April.
    19. David Samu & Anil K Seth & Thomas Nowotny, 2014. "Influence of Wiring Cost on the Large-Scale Architecture of Human Cortical Connectivity," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-24, April.
    20. Frank Emmert-Streib, 2013. "Structural Properties and Complexity of a New Network Class: Collatz Step Graphs," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-14, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.