Author
Listed:
- Mengchen Zhu
- Christopher J Rozell
Abstract
There is still much unknown regarding the computational role of inhibitory cells in the sensory cortex. While modeling studies could potentially shed light on the critical role played by inhibition in cortical computation, there is a gap between the simplicity of many models of sensory coding and the biological complexity of the inhibitory subpopulation. In particular, many models do not respect that inhibition must be implemented in a separate subpopulation, with those inhibitory interneurons having a diversity of tuning properties and characteristic E/I cell ratios. In this study we demonstrate a computational framework for implementing inhibition in dynamical systems models that better respects these biophysical observations about inhibitory interneurons. The main approach leverages recent work related to decomposing matrices into low-rank and sparse components via convex optimization, and explicitly exploits the fact that models and input statistics often have low-dimensional structure that can be exploited for efficient implementations. While this approach is applicable to a wide range of sensory coding models (including a family of models based on Bayesian inference in a linear generative model), for concreteness we demonstrate the approach on a network implementing sparse coding. We show that the resulting implementation stays faithful to the original coding goals while using inhibitory interneurons that are much more biophysically plausible.Author Summary: Cortical function is a result of coordinated interactions between excitatory and inhibitory neural populations. In previous theoretical models of sensory systems, inhibitory neurons are often ignored or modeled too simplistically to contribute to understanding their role in cortical computation. In biophysical reality, inhibition is implemented with interneurons that have different characteristics from the population of excitatory cells. In this study, we propose a computational approach for including inhibition in theoretical models of neural coding in a way that respects several of these important characteristics, such as the relative number of inhibitory cells and the diversity of their response properties. The main idea is that the significant structure of the sensory world is reflected in very structured models of sensory coding, which can then be exploited in the implementation of the model using modern computational techniques. We demonstrate this approach on one specific model of sensory coding (called “sparse coding”) that has been successful at modeling other aspects of sensory cortex.
Suggested Citation
Mengchen Zhu & Christopher J Rozell, 2015.
"Modeling Inhibitory Interneurons in Efficient Sensory Coding Models,"
PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-22, July.
Handle:
RePEc:plo:pcbi00:1004353
DOI: 10.1371/journal.pcbi.1004353
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004353. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.