IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002904.html
   My bibliography  Save this article

Noise Suppression and Surplus Synchrony by Coincidence Detection

Author

Listed:
  • Matthias Schultze-Kraft
  • Markus Diesmann
  • Sonja Grün
  • Moritz Helias

Abstract

The functional significance of correlations between action potentials of neurons is still a matter of vivid debate. In particular, it is presently unclear how much synchrony is caused by afferent synchronized events and how much is intrinsic due to the connectivity structure of cortex. The available analytical approaches based on the diffusion approximation do not allow to model spike synchrony, preventing a thorough analysis. Here we theoretically investigate to what extent common synaptic afferents and synchronized inputs each contribute to correlated spiking on a fine temporal scale between pairs of neurons. We employ direct simulation and extend earlier analytical methods based on the diffusion approximation to pulse-coupling, allowing us to introduce precisely timed correlations in the spiking activity of the synaptic afferents. We investigate the transmission of correlated synaptic input currents by pairs of integrate-and-fire model neurons, so that the same input covariance can be realized by common inputs or by spiking synchrony. We identify two distinct regimes: In the limit of low correlation linear perturbation theory accurately determines the correlation transmission coefficient, which is typically smaller than unity, but increases sensitively even for weakly synchronous inputs. In the limit of high input correlation, in the presence of synchrony, a qualitatively new picture arises. As the non-linear neuronal response becomes dominant, the output correlation becomes higher than the total correlation in the input. This transmission coefficient larger unity is a direct consequence of non-linear neural processing in the presence of noise, elucidating how synchrony-coded signals benefit from these generic properties present in cortical networks.Author Summary: Whether spike timing conveys information in cortical networks or whether the firing rate alone is sufficient is a matter of controversial debate, touching the fundamental question of how the brain processes, stores, and conveys information. If the firing rate alone is the decisive signal used in the brain, correlations between action potentials are just an epiphenomenon of cortical connectivity, where pairs of neurons share a considerable fraction of common afferents. Due to membrane leakage, small synaptic amplitudes and the non-linear threshold, nerve cells exhibit lossy transmission of correlation originating from shared synaptic inputs. However, the membrane potential of cortical neurons often displays non-Gaussian fluctuations, caused by synchronized synaptic inputs. Moreover, synchronously active neurons have been found to reflect behavior in primates. In this work we therefore contrast the transmission of correlation due to shared afferents and due to synchronously arriving synaptic impulses for leaky neuron models. We not only find that neurons are highly sensitive to synchronous afferents, but that they can suppress noise on signals transmitted by synchrony, a computational advantage over rate signals.

Suggested Citation

  • Matthias Schultze-Kraft & Markus Diesmann & Sonja Grün & Moritz Helias, 2013. "Noise Suppression and Surplus Synchrony by Coincidence Detection," PLOS Computational Biology, Public Library of Science, vol. 9(4), pages 1-15, April.
  • Handle: RePEc:plo:pcbi00:1002904
    DOI: 10.1371/journal.pcbi.1002904
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002904
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002904&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002904?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael London & Arnd Roth & Lisa Beeren & Michael Häusser & Peter E. Latham, 2010. "Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex," Nature, Nature, vol. 466(7302), pages 123-127, July.
    2. Tom Tetzlaff & Moritz Helias & Gaute T Einevoll & Markus Diesmann, 2012. "Decorrelation of Neural-Network Activity by Inhibitory Feedback," PLOS Computational Biology, Public Library of Science, vol. 8(8), pages 1-29, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omri Harish & David Hansel, 2015. "Asynchronous Rate Chaos in Spiking Neuronal Circuits," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-38, July.
    2. Christian Meisel & Andreas Klaus & Christian Kuehn & Dietmar Plenz, 2015. "Critical Slowing Down Governs the Transition to Neuron Spiking," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-20, February.
    3. Ravi Pancholi & Lauren Ryan & Simon Peron, 2023. "Learning in a sensory cortical microstimulation task is associated with elevated representational stability," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Emiliano Torre & Carlos Canova & Michael Denker & George Gerstein & Moritz Helias & Sonja Grün, 2016. "ASSET: Analysis of Sequences of Synchronous Events in Massively Parallel Spike Trains," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-34, July.
    5. Volker Pernice & Benjamin Staude & Stefano Cardanobile & Stefan Rotter, 2011. "How Structure Determines Correlations in Neuronal Networks," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-14, May.
    6. Sacha Jennifer van Albada & Moritz Helias & Markus Diesmann, 2015. "Scalability of Asynchronous Networks Is Limited by One-to-One Mapping between Effective Connectivity and Correlations," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-37, September.
    7. Vicente Reyes-Puerta & Suam Kim & Jyh-Jang Sun & Barbara Imbrosci & Werner Kilb & Heiko J Luhmann, 2015. "High Stimulus-Related Information in Barrel Cortex Inhibitory Interneurons," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-32, June.
    8. Mizusaki, Beatriz E.P. & Agnes, Everton J. & Erichsen, Rubem & Brunnet, Leonardo G., 2017. "Learning and retrieval behavior in recurrent neural networks with pre-synaptic dependent homeostatic plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 279-286.
    9. Vladimir Ilin & Ian H Stevenson & Maxim Volgushev, 2014. "Injection of Fully-Defined Signal Mixtures: A Novel High-Throughput Tool to Study Neuronal Encoding and Computations," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-10, October.
    10. Angulo-Garcia, David & Torcini, Alessandro, 2014. "Stable chaos in fluctuation driven neural circuits," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 233-245.
    11. Moritz Helias & Tom Tetzlaff & Markus Diesmann, 2014. "The Correlation Structure of Local Neuronal Networks Intrinsically Results from Recurrent Dynamics," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-21, January.
    12. Takuya Ito & Scott L Brincat & Markus Siegel & Ravi D Mill & Biyu J He & Earl K Miller & Horacio G Rotstein & Michael W Cole, 2020. "Task-evoked activity quenches neural correlations and variability across cortical areas," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-39, August.
    13. Evan S Schaffer & Srdjan Ostojic & L F Abbott, 2013. "A Complex-Valued Firing-Rate Model That Approximates the Dynamics of Spiking Networks," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-11, October.
    14. Hannah Bos & Markus Diesmann & Moritz Helias, 2016. "Identifying Anatomical Origins of Coexisting Oscillations in the Cortical Microcircuit," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-34, October.
    15. Volker Pernice & Rava Azeredo da Silveira, 2018. "Interpretation of correlated neural variability from models of feed-forward and recurrent circuits," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-26, February.
    16. Yasuhiro Tsubo & Yoshikazu Isomura & Tomoki Fukai, 2012. "Power-Law Inter-Spike Interval Distributions Infer a Conditional Maximization of Entropy in Cortical Neurons," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-11, April.
    17. Sadra Sadeh & Stefan Rotter, 2015. "Orientation Selectivity in Inhibition-Dominated Networks of Spiking Neurons: Effect of Single Neuron Properties and Network Dynamics," PLOS Computational Biology, Public Library of Science, vol. 11(1), pages 1-17, January.
    18. Andrea K Barreiro & Shree Hari Gautam & Woodrow L Shew & Cheng Ly, 2017. "A theoretical framework for analyzing coupled neuronal networks: Application to the olfactory system," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-37, October.
    19. Klas H Pettersen & Henrik Lindén & Tom Tetzlaff & Gaute T Einevoll, 2014. "Power Laws from Linear Neuronal Cable Theory: Power Spectral Densities of the Soma Potential, Soma Membrane Current and Single-Neuron Contribution to the EEG," PLOS Computational Biology, Public Library of Science, vol. 10(11), pages 1-26, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.