Noise Suppression and Surplus Synchrony by Coincidence Detection
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pcbi.1002904
Download full text from publisher
References listed on IDEAS
- Michael London & Arnd Roth & Lisa Beeren & Michael Häusser & Peter E. Latham, 2010. "Sensitivity to perturbations in vivo implies high noise and suggests rate coding in cortex," Nature, Nature, vol. 466(7302), pages 123-127, July.
- Tom Tetzlaff & Moritz Helias & Gaute T Einevoll & Markus Diesmann, 2012. "Decorrelation of Neural-Network Activity by Inhibitory Feedback," PLOS Computational Biology, Public Library of Science, vol. 8(8), pages 1-29, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Thomas H Hraha & Matthew J Westacott & Marina Pozzoli & Aleena M Notary & P Mason McClatchey & Richard K P Benninger, 2014. "Phase Transitions in the Multi-cellular Regulatory Behavior of Pancreatic Islet Excitability," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-14, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Omri Harish & David Hansel, 2015. "Asynchronous Rate Chaos in Spiking Neuronal Circuits," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-38, July.
- Christian Meisel & Andreas Klaus & Christian Kuehn & Dietmar Plenz, 2015. "Critical Slowing Down Governs the Transition to Neuron Spiking," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-20, February.
- Thomas H Hraha & Matthew J Westacott & Marina Pozzoli & Aleena M Notary & P Mason McClatchey & Richard K P Benninger, 2014. "Phase Transitions in the Multi-cellular Regulatory Behavior of Pancreatic Islet Excitability," PLOS Computational Biology, Public Library of Science, vol. 10(9), pages 1-14, September.
- Ravi Pancholi & Lauren Ryan & Simon Peron, 2023. "Learning in a sensory cortical microstimulation task is associated with elevated representational stability," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Emiliano Torre & Carlos Canova & Michael Denker & George Gerstein & Moritz Helias & Sonja Grün, 2016. "ASSET: Analysis of Sequences of Synchronous Events in Massively Parallel Spike Trains," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-34, July.
- Volker Pernice & Benjamin Staude & Stefano Cardanobile & Stefan Rotter, 2011. "How Structure Determines Correlations in Neuronal Networks," PLOS Computational Biology, Public Library of Science, vol. 7(5), pages 1-14, May.
- Sacha Jennifer van Albada & Moritz Helias & Markus Diesmann, 2015. "Scalability of Asynchronous Networks Is Limited by One-to-One Mapping between Effective Connectivity and Correlations," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-37, September.
- Vicente Reyes-Puerta & Suam Kim & Jyh-Jang Sun & Barbara Imbrosci & Werner Kilb & Heiko J Luhmann, 2015. "High Stimulus-Related Information in Barrel Cortex Inhibitory Interneurons," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-32, June.
- Mizusaki, Beatriz E.P. & Agnes, Everton J. & Erichsen, Rubem & Brunnet, Leonardo G., 2017. "Learning and retrieval behavior in recurrent neural networks with pre-synaptic dependent homeostatic plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 279-286.
- Jannis Schuecker & Maximilian Schmidt & Sacha J van Albada & Markus Diesmann & Moritz Helias, 2017. "Fundamental Activity Constraints Lead to Specific Interpretations of the Connectome," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-25, February.
- Vladimir Ilin & Ian H Stevenson & Maxim Volgushev, 2014. "Injection of Fully-Defined Signal Mixtures: A Novel High-Throughput Tool to Study Neuronal Encoding and Computations," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-10, October.
- Angulo-Garcia, David & Torcini, Alessandro, 2014. "Stable chaos in fluctuation driven neural circuits," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 233-245.
- Moritz Helias & Tom Tetzlaff & Markus Diesmann, 2014. "The Correlation Structure of Local Neuronal Networks Intrinsically Results from Recurrent Dynamics," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-21, January.
- Tatjana Tchumatchenko & Fred Wolf, 2011. "Representation of Dynamical Stimuli in Populations of Threshold Neurons," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-19, October.
- Takuya Ito & Scott L Brincat & Markus Siegel & Ravi D Mill & Biyu J He & Earl K Miller & Horacio G Rotstein & Michael W Cole, 2020. "Task-evoked activity quenches neural correlations and variability across cortical areas," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-39, August.
- Evan S Schaffer & Srdjan Ostojic & L F Abbott, 2013. "A Complex-Valued Firing-Rate Model That Approximates the Dynamics of Spiking Networks," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-11, October.
- Hannah Bos & Markus Diesmann & Moritz Helias, 2016. "Identifying Anatomical Origins of Coexisting Oscillations in the Cortical Microcircuit," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-34, October.
- Farzad Farkhooi & Anja Froese & Eilif Muller & Randolf Menzel & Martin P Nawrot, 2013. "Cellular Adaptation Facilitates Sparse and Reliable Coding in Sensory Pathways," PLOS Computational Biology, Public Library of Science, vol. 9(10), pages 1-14, October.
- Hammad F. Khan & Sayan Dutta & Alicia N. Scott & Shulan Xiao & Saumitra Yadav & Xiaoling Chen & Uma K. Aryal & Tamara L. Kinzer-Ursem & Jean-Christophe Rochet & Krishna Jayant, 2024. "Site-specific seeding of Lewy pathology induces distinct pre-motor cellular and dendritic vulnerabilities in the cortex," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
- Volker Pernice & Rava Azeredo da Silveira, 2018. "Interpretation of correlated neural variability from models of feed-forward and recurrent circuits," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-26, February.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002904. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.