IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0037364.html
   My bibliography  Save this article

An Improved Test for Detecting Multiplicative Homeostatic Synaptic Scaling

Author

Listed:
  • Jimok Kim
  • Richard W Tsien
  • Bradley E Alger

Abstract

Homeostatic scaling of synaptic strengths is essential for maintenance of network “gain”, but also poses a risk of losing the distinctions among relative synaptic weights, which are possibly cellular correlates of memory storage. Multiplicative scaling of all synapses has been proposed as a mechanism that would preserve the relative weights among them, because they would all be proportionately adjusted. It is crucial for this hypothesis that all synapses be affected identically, but whether or not this actually occurs is difficult to determine directly. Mathematical tests for multiplicative synaptic scaling are presently carried out on distributions of miniature synaptic current amplitudes, but the accuracy of the test procedure has not been fully validated. We now show that the existence of an amplitude threshold for empirical detection of miniature synaptic currents limits the use of the most common method for detecting multiplicative changes. Our new method circumvents the problem by discarding the potentially distorting subthreshold values after computational scaling. This new method should be useful in assessing the underlying neurophysiological nature of a homeostatic synaptic scaling transformation, and therefore in evaluating its functional significance.

Suggested Citation

  • Jimok Kim & Richard W Tsien & Bradley E Alger, 2012. "An Improved Test for Detecting Multiplicative Homeostatic Synaptic Scaling," PLOS ONE, Public Library of Science, vol. 7(5), pages 1-9, May.
  • Handle: RePEc:plo:pone00:0037364
    DOI: 10.1371/journal.pone.0037364
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0037364
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0037364&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0037364?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gina G. Turrigiano & Kenneth R. Leslie & Niraj S. Desai & Lana C. Rutherford & Sacha B. Nelson, 1998. "Activity-dependent scaling of quantal amplitude in neocortical neurons," Nature, Nature, vol. 391(6670), pages 892-896, February.
    2. Sen Song & Per Jesper Sjöström & Markus Reigl & Sacha Nelson & Dmitri B Chklovskii, 2005. "Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits," PLOS Biology, Public Library of Science, vol. 3(3), pages 1-1, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Hartmann & Andreea Lazar & Bernhard Nessler & Jochen Triesch, 2015. "Where’s the Noise? Key Features of Spontaneous Activity and Neural Variability Arise through Learning in a Deterministic Network," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-35, December.
    2. Baktash Babadi & L F Abbott, 2016. "Stability and Competition in Multi-spike Models of Spike-Timing Dependent Plasticity," PLOS Computational Biology, Public Library of Science, vol. 12(3), pages 1-26, March.
    3. Matteo Saponati & Martin Vinck, 2023. "Sequence anticipation and spike-timing-dependent plasticity emerge from a predictive learning rule," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Niranjan Chakravarthy & Shivkumar Sabesan & Kostas Tsakalis & Leon Iasemidis, 2009. "Controlling epileptic seizures in a neural mass model," Journal of Combinatorial Optimization, Springer, vol. 17(1), pages 98-116, January.
    5. Damien M O’Halloran, 2020. "Simulation model of CA1 pyramidal neurons reveal opposing roles for the Na+/Ca2+ exchange current and Ca2+-activated K+ current during spike-timing dependent synaptic plasticity," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-12, March.
    6. Sacha Jennifer van Albada & Moritz Helias & Markus Diesmann, 2015. "Scalability of Asynchronous Networks Is Limited by One-to-One Mapping between Effective Connectivity and Correlations," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-37, September.
    7. Dean J. Kareemo & Christina S. Winborn & Samantha S. Olah & Carley N. Miller & JungMin Kim & Chelsie A. Kadgien & Hannah S. Actor-Engel & Harrison J. Ramsay & Austin M. Ramsey & Jason Aoto & Matthew J, 2024. "Genetically encoded intrabody probes for labeling and manipulating AMPA-type glutamate receptors," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Christian Keck & Cristina Savin & Jörg Lücke, 2012. "Feedforward Inhibition and Synaptic Scaling – Two Sides of the Same Coin?," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-15, March.
    9. Iris Reuveni & Sourav Ghosh & Edi Barkai, 2017. "Real Time Multiplicative Memory Amplification Mediated by Whole-Cell Scaling of Synaptic Response in Key Neurons," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-31, January.
    10. Julijana Gjorgjieva & Taro Toyoizumi & Stephen J Eglen, 2009. "Burst-Time-Dependent Plasticity Robustly Guides ON/OFF Segregation in the Lateral Geniculate Nucleus," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-19, December.
    11. Mizusaki, Beatriz E.P. & Agnes, Everton J. & Erichsen, Rubem & Brunnet, Leonardo G., 2017. "Learning and retrieval behavior in recurrent neural networks with pre-synaptic dependent homeostatic plasticity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 279-286.
    12. Giorgia Dellaferrera & Stanisław Woźniak & Giacomo Indiveri & Angeliki Pantazi & Evangelos Eleftheriou, 2022. "Introducing principles of synaptic integration in the optimization of deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Vladimir V Klinshov & Jun-nosuke Teramae & Vladimir I Nekorkin & Tomoki Fukai, 2014. "Dense Neuron Clustering Explains Connectivity Statistics in Cortical Microcircuits," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-12, April.
    14. Aseel Shomar & Lukas Geyrhofer & Noam E Ziv & Naama Brenner, 2017. "Cooperative stochastic binding and unbinding explain synaptic size dynamics and statistics," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-24, July.
    15. Jian K Liu & Zhen-Su She, 2009. "A Spike-Timing Pattern Based Neural Network Model for the Study of Memory Dynamics," PLOS ONE, Public Library of Science, vol. 4(7), pages 1-8, July.
    16. John Palmer & Adam Keane & Pulin Gong, 2017. "Learning and executing goal-directed choices by internally generated sequences in spiking neural circuits," PLOS Computational Biology, Public Library of Science, vol. 13(7), pages 1-23, July.
    17. Naoki Hiratani & Tomoki Fukai, 2015. "Mixed Signal Learning by Spike Correlation Propagation in Feedback Inhibitory Circuits," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-36, April.
    18. Angulo-Garcia, David & Torcini, Alessandro, 2014. "Stable chaos in fluctuation driven neural circuits," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 233-245.
    19. Georg Martius & Ralf Der & Nihat Ay, 2013. "Information Driven Self-Organization of Complex Robotic Behaviors," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-14, May.
    20. Tiziano D’Albis & Richard Kempter, 2017. "A single-cell spiking model for the origin of grid-cell patterns," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-41, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0037364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.