IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0002534.html
   My bibliography  Save this article

A Fluctuation-Driven Mechanism for Slow Decision Processes in Reverberant Networks

Author

Listed:
  • Daniel Martí
  • Gustavo Deco
  • Maurizio Mattia
  • Guido Gigante
  • Paolo Del Giudice

Abstract

The spike activity of cells in some cortical areas has been found to be correlated with reaction times and behavioral responses during two-choice decision tasks. These experimental findings have motivated the study of biologically plausible winner-take-all network models, in which strong recurrent excitation and feedback inhibition allow the network to form a categorical choice upon stimulation. Choice formation corresponds in these models to the transition from the spontaneous state of the network to a state where neurons selective for one of the choices fire at a high rate and inhibit the activity of the other neurons. This transition has been traditionally induced by an increase in the external input that destabilizes the spontaneous state of the network and forces its relaxation to a decision state. Here we explore a different mechanism by which the system can undergo such transitions while keeping the spontaneous state stable, based on an escape induced by finite-size noise from the spontaneous state. This decision mechanism naturally arises for low stimulus strengths and leads to exponentially distributed decision times when the amount of noise in the system is small. Furthermore, we show using numerical simulations that mean decision times follow in this regime an exponential dependence on the amplitude of noise. The escape mechanism provides thus a dynamical basis for the wide range and variability of decision times observed experimentally.

Suggested Citation

  • Daniel Martí & Gustavo Deco & Maurizio Mattia & Guido Gigante & Paolo Del Giudice, 2008. "A Fluctuation-Driven Mechanism for Slow Decision Processes in Reverberant Networks," PLOS ONE, Public Library of Science, vol. 3(7), pages 1-12, July.
  • Handle: RePEc:plo:pone00:0002534
    DOI: 10.1371/journal.pone.0002534
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002534
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0002534&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0002534?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guido Gigante & Maurizio Mattia & Jochen Braun & Paolo Del Giudice, 2009. "Bistable Perception Modeled as Competing Stochastic Integrations at Two Levels," PLOS Computational Biology, Public Library of Science, vol. 5(7), pages 1-9, July.
    2. Gustavo Deco & Daniel Martí & Anders Ledberg & Ramon Reig & Maria V Sanchez Vives, 2009. "Effective Reduced Diffusion-Models: A Data Driven Approach to the Analysis of Neuronal Dynamics," PLOS Computational Biology, Public Library of Science, vol. 5(12), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0002534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.