IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v222y2011i12p2011-2018.html
   My bibliography  Save this article

Ecological niche similarities of Peponapis bees and non-domesticated Cucurbita species

Author

Listed:
  • Giannini, T.C.
  • Lira-Saade, R.
  • Ayala, R.
  • Saraiva, A.M.
  • Alves-dos-Santos, I.

Abstract

Peponapis bees are considered specialized pollinators of Cucurbita flowers, a genus that presents several species of economic value (squashes and pumpkins). Both genera originated in the Americas, and their diversity dispersion center is in Mexico. Ten species of Peponapis and ten species of Cucurbita (only non-domesticated species) were analyzed considering the similarity of their ecological niche characteristics with respect to climatic conditions of their occurrence areas (abiotic variables) and interactions between species (biotic variables). The similarity of climatic conditions (temperature and precipitation) was estimated through cluster analyses. The areas of potential occurrence of the most similar species were obtained through ecological niche modeling and summed with geographic information system tools. Three main clusters were obtained: one with species that shared potential occurrence areas mainly in deserts (P. pruinosa, P. timberlakei, C. digitata, C. palmata, C. foetidissima), another in moist forests (P. limitaris, P. atrata, C. lundelliana, C. o. martinezii) and a third mainly in dry forests (C. a. sororia, C. radicans, C. pedatifolia, P. azteca, P. smithi, P. crassidentata, P. utahensis). Some species with similar ecological niche presented potential shared areas that are also similar to their geographical distribution, like those occurring predominantly on deserts. However, some clustered species presented larger geographical areas, such as P. pruinosa and C. foetidissima suggesting other drivers than climatic conditions to shape their distributions. The domestication of Cucurbita and also the natural history of both genera were considered also as important factors.

Suggested Citation

  • Giannini, T.C. & Lira-Saade, R. & Ayala, R. & Saraiva, A.M. & Alves-dos-Santos, I., 2011. "Ecological niche similarities of Peponapis bees and non-domesticated Cucurbita species," Ecological Modelling, Elsevier, vol. 222(12), pages 2011-2018.
  • Handle: RePEc:eee:ecomod:v:222:y:2011:i:12:p:2011-2018
    DOI: 10.1016/j.ecolmodel.2011.03.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380011001682
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2011.03.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sweeney, A.W. & Beebe, N.W. & Cooper, R.D., 2007. "Analysis of environmental factors influencing the range of anopheline mosquitoes in northern Australia using a genetic algorithm and data mining methods," Ecological Modelling, Elsevier, vol. 203(3), pages 375-386.
    2. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(5), pages 777-788, October.
    3. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(1), pages 151-160, February.
    4. Rebecca S Levine & ATownsend Peterson & Krista L Yorita & Darin Carroll & Inger K Damon & Mary G Reynolds, 2007. "Ecological Niche and Geographic Distribution of Human Monkeypox in Africa," PLOS ONE, Public Library of Science, vol. 2(1), pages 1-7, January.
    5. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(4), pages 629-637, August.
    6. Peterson, A. Townsend & Papeş, Monica & Soberón, Jorge, 2008. "Rethinking receiver operating characteristic analysis applications in ecological niche modeling," Ecological Modelling, Elsevier, vol. 213(1), pages 63-72.
    7. ,, 1999. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 15(3), pages 427-432, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diana Elena Vizitiu & Ionela-Daniela Sardarescu & Elena Cocuta Buciumeanu & Ionela-Cătălina Guta & Lucian Dincă & Flavius Bălăcenoiu & Dragoș Toma & Vlad Crișan & Alin Din, 2023. "The Influence of Groves on Aboveground Arthropod Diversity and Evolution in a Vineyard in Southern Romania," Sustainability, MDPI, vol. 15(23), pages 1-19, December.
    2. Silva, Daniel P. & Gonzalez, Victor H. & Melo, Gabriel A.R. & Lucia, Mariano & Alvarez, Leopoldo J. & De Marco, Paulo, 2014. "Seeking the flowers for the bees: Integrating biotic interactions into niche models to assess the distribution of the exotic bee species Lithurgus huberi in South America," Ecological Modelling, Elsevier, vol. 273(C), pages 200-209.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weiyu Yu & Nicola A Wardrop & Robert E S Bain & Victor Alegana & Laura J Graham & Jim A Wright, 2019. "Mapping access to domestic water supplies from incomplete data in developing countries: An illustrative assessment for Kenya," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-19, May.
    2. Singh, Aditya & Kushwaha, S.P.S., 2011. "Refining logistic regression models for wildlife habitat suitability modeling—A case study with muntjak and goral in the Central Himalayas, India," Ecological Modelling, Elsevier, vol. 222(8), pages 1354-1366.
    3. Carlos Yañez-Arenas & A Townsend Peterson & Pierre Mokondoko & Octavio Rojas-Soto & Enrique Martínez-Meyer, 2014. "The Use of Ecological Niche Modeling to Infer Potential Risk Areas of Snakebite in the Mexican State of Veracruz," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    4. Owens, Hannah L. & Campbell, Lindsay P. & Dornak, L. Lynnette & Saupe, Erin E. & Barve, Narayani & Soberón, Jorge & Ingenloff, Kate & Lira-Noriega, Andrés & Hensz, Christopher M. & Myers, Corinne E. &, 2013. "Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas," Ecological Modelling, Elsevier, vol. 263(C), pages 10-18.
    5. Barve, Narayani & Barve, Vijay & Jiménez-Valverde, Alberto & Lira-Noriega, Andrés & Maher, Sean P. & Peterson, A. Townsend & Soberón, Jorge & Villalobos, Fabricio, 2011. "The crucial role of the accessible area in ecological niche modeling and species distribution modeling," Ecological Modelling, Elsevier, vol. 222(11), pages 1810-1819.
    6. Krzysztof S. Targiel & Maciej Nowak & Tadeusz Trzaskalik, 2018. "Scheduling non-critical activities using multicriteria approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 585-598, September.
    7. F. Castro-Llanos & G. Hyman & J. Rubiano & J. Ramirez-Villegas & H. Achicanoy, 2019. "Climate change favors rice production at higher elevations in Colombia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1401-1430, December.
    8. Okitonyumbe Y.F., Joseph & Ulungu, Berthold E.-L., 2013. "Nouvelle caractérisation des solutions efficaces des problèmes d’optimisation combinatoire multi-objectif [New characterization of efficient solution in multi-objective combinatorial optimization]," MPRA Paper 66123, University Library of Munich, Germany.
    9. Amit Kumar & Anila Gupta, 2013. "Mehar’s methods for fuzzy assignment problems with restrictions," Fuzzy Information and Engineering, Springer, vol. 5(1), pages 27-44, March.
    10. Monica Motta & Caterina Sartori, 2020. "Normality and Nondegeneracy of the Maximum Principle in Optimal Impulsive Control Under State Constraints," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 44-71, April.
    11. Zhang, Quanzhong & Wei, Haiyan & Liu, Jing & Zhao, Zefang & Ran, Qiao & Gu, Wei, 2021. "A Bayesian network with fuzzy mathematics for species habitat suitability analysis: A case with limited Angelica sinensis (Oliv.) Diels data," Ecological Modelling, Elsevier, vol. 450(C).
    12. Chenchen Wu & Dachuan Xu & Donglei Du & Wenqing Xu, 2016. "An approximation algorithm for the balanced Max-3-Uncut problem using complex semidefinite programming rounding," Journal of Combinatorial Optimization, Springer, vol. 32(4), pages 1017-1035, November.
    13. Gengping Zhu & Matthew J Petersen & Wenjun Bu, 2012. "Selecting Biological Meaningful Environmental Dimensions of Low Discrepancy among Ranges to Predict Potential Distribution of Bean Plataspid Invasion," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-9, September.
    14. Uzma Ashraf & Hassan Ali & Muhammad Nawaz Chaudry & Irfan Ashraf & Adila Batool & Zafeer Saqib, 2016. "Predicting the Potential Distribution of Olea ferruginea in Pakistan incorporating Climate Change by Using Maxent Model," Sustainability, MDPI, vol. 8(8), pages 1-11, July.
    15. Ernst Althaus & Felix Rauterberg & Sarah Ziegler, 2020. "Computing Euclidean Steiner trees over segments," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 309-325, October.
    16. World Bank, 2003. "Argentina : Reforming Policies and Institutions for Efficiency and Equity of Public Expenditures," World Bank Publications - Reports 14637, The World Bank Group.
    17. Ceretani, Andrea N. & Salva, Natalia N. & Tarzia, Domingo A., 2018. "Approximation of the modified error function," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 607-617.
    18. Parihar, Amit Kumar Singh & Hammer, Thomas & Sridhar, G., 2015. "Development and testing of tube type wet ESP for the removal of particulate matter and tar from producer gas," Renewable Energy, Elsevier, vol. 74(C), pages 875-883.
    19. Liang, Wanwan & Papeş, Monica & Tran, Liem & Grant, Jerome & Washington-Allen, Robert & Stewart, Scott & Wiggins, Gregory, 2018. "The effect of pseudo-absence selection method on transferability of species distribution models in the context of non-adaptive niche shift," Ecological Modelling, Elsevier, vol. 388(C), pages 1-9.
    20. Brown, Jeffrey R., 2001. "Private pensions, mortality risk, and the decision to annuitize," Journal of Public Economics, Elsevier, vol. 82(1), pages 29-62, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:222:y:2011:i:12:p:2011-2018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.