IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0085787.html
   My bibliography  Save this article

Detrended Fluctuation Analysis and Adaptive Fractal Analysis of Stride Time Data in Parkinson's Disease: Stitching Together Short Gait Trials

Author

Listed:
  • Marietta Kirchner
  • Patric Schubert
  • Magnus Liebherr
  • Christian T Haas

Abstract

Variability indicates motor control disturbances and is suitable to identify gait pathologies. It can be quantified by linear parameters (amplitude estimators) and more sophisticated nonlinear methods (structural information). Detrended Fluctuation Analysis (DFA) is one method to measure structural information, e.g., from stride time series. Recently, an improved method, Adaptive Fractal Analysis (AFA), has been proposed. This method has not been applied to gait data before. Fractal scaling methods (FS) require long stride-to-stride data to obtain valid results. However, in clinical studies, it is not usual to measure a large number of strides (e.g., strides). Amongst others, clinical gait analysis is limited due to short walkways, thus, FS seem to be inapplicable. The purpose of the present study was to evaluate FS under clinical conditions. Stride time data of five self-paced walking trials ( strides each) of subjects with PD and a healthy control group (CG) was measured. To generate longer time series, stride time sequences were stitched together. The coefficient of variation (CV), fractal scaling exponents (DFA) and (AFA) were calculated. Two surrogate tests were performed: A) the whole time series was randomly shuffled; B) the single trials were randomly shuffled separately and afterwards stitched together. CV did not discriminate between PD and CG. However, significant differences between PD and CG were found concerning and . Surrogate version B yielded a higher mean squared error and empirical quantiles than version A. Hence, we conclude that the stitching procedure creates an artificial structure resulting in an overestimation of true . The method of stitching together sections of gait seems to be appropriate in order to distinguish between PD and CG with FS. It provides an approach to integrate FS as standard in clinical gait analysis and to overcome limitations such as short walkways.

Suggested Citation

  • Marietta Kirchner & Patric Schubert & Magnus Liebherr & Christian T Haas, 2014. "Detrended Fluctuation Analysis and Adaptive Fractal Analysis of Stride Time Data in Parkinson's Disease: Stitching Together Short Gait Trials," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-6, January.
  • Handle: RePEc:plo:pone00:0085787
    DOI: 10.1371/journal.pone.0085787
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0085787
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0085787&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0085787?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Didier Delignières & Kjerstin Torre & Pierre-Louis Bernard, 2011. "Transition from Persistent to Anti-Persistent Correlations in Postural Sway Indicates Velocity-Based Control," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-10, February.
    2. Jonathan B Dingwell & Joby John & Joseph P Cusumano, 2010. "Do Humans Optimally Exploit Redundancy to Control Step Variability in Walking?," PLOS Computational Biology, Public Library of Science, vol. 6(7), pages 1-15, July.
    3. Hausdorff, Jeffrey M. & Ashkenazy, Yosef & Peng, Chang-K. & Ivanov, Plamen Ch. & Stanley, H.Eugene & Goldberger, Ary L., 2001. "When human walking becomes random walking: fractal analysis and modeling of gait rhythm fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 302(1), pages 138-147.
    4. Kirchner, M. & Schubert, P. & Schmidtbleicher, D. & Haas, C.T., 2012. "Evaluation of the temporal structure of postural sway fluctuations based on a comprehensive set of analysis tools," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4692-4703.
    5. Weron, Rafał, 2002. "Estimating long-range dependence: finite sample properties and confidence intervals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 285-299.
    6. Jianbo Gao & Jing Hu & Wen-wen Tung, 2011. "Facilitating Joint Chaos and Fractal Analysis of Biosignals through Nonlinear Adaptive Filtering," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-8, September.
    7. Bartsch, Ronny & Plotnik, Meir & Kantelhardt, Jan W. & Havlin, Shlomo & Giladi, Nir & Hausdorff, Jeffrey M., 2007. "Fluctuation and synchronization of gait intervals and gait force profiles distinguish stages of Parkinson's disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(2), pages 455-465.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Hong-di & Wang, Jun-li & Wei, Hai-rui & Ye, Cheng & Ding, Yi, 2016. "Fractal behavior of traffic volume on urban expressway through adaptive fractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 518-525.
    2. Neelakshi, J. & Rosa, Reinaldo R. & Savio, Siomel & Stephany, Stephan & de Meneses, Francisco C. & Kherani, Esfhan Alam & Muralikrishna, P., 2022. "Multifractal characteristics of the low latitude equatorial ionospheric E–F valley region irregularities," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    3. Robert J Ellis & Yee Sien Ng & Shenggao Zhu & Dawn M Tan & Boyd Anderson & Gottfried Schlaug & Ye Wang, 2015. "A Validated Smartphone-Based Assessment of Gait and Gait Variability in Parkinson’s Disease," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-22, October.
    4. Ian D Colley & Roger T Dean, 2019. "Origins of 1/f noise in human music performance from short-range autocorrelations related to rhythmic structures," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kembro, Jackelyn M. & Flesia, Ana Georgina & Gleiser, Raquel M. & Perillo, María A. & Marin, Raul H., 2013. "Assessment of long-range correlation in animal behavior time series: The temporal pattern of locomotor activity of Japanese quail (Coturnix coturnix) and mosquito larva (Culex quinquefasciatus)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6400-6413.
    2. Echeverria, Juan C. & Rodriguez, Eduardo & Velasco, Alejandra & Alvarez-Ramirez, Jose, 2010. "Limb dominance changes in walking evolution explored by asymmetric correlations in gait dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(8), pages 1625-1634.
    3. Julius Verrel & Didier Pradon & Nicolas Vuillerme, 2012. "Persistence of Motor-Equivalent Postural Fluctuations during Bipedal Quiet Standing," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-8, October.
    4. repec:diw:diwwpp:dp1647 is not listed on IDEAS
    5. Mihailović, Dragutin T. & Nikolić-Đorić, Emilija & Arsenić, Ilija & Malinović-Milićević, Slavica & Singh, Vijay P. & Stošić, Tatijana & Stošić, Borko, 2019. "Analysis of daily streamflow complexity by Kolmogorov measures and Lyapunov exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 290-303.
    6. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    7. Ferreira, Paulo & Kristoufek, Ladislav, 2017. "What is new about covered interest parity condition in the European Union? Evidence from fractal cross-correlation regressions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 554-566.
    8. Delignières, Didier & Marmelat, Vivien, 2014. "Strong anticipation and long-range cross-correlation: Application of detrended cross-correlation analysis to human behavioral data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 47-60.
    9. Xue Pan & Lei Hou & Mutua Stephen & Huijie Yang & Chenping Zhu, 2014. "Evaluation of Scaling Invariance Embedded in Short Time Series," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-27, December.
    10. Auer, Benjamin R., 2016. "On the performance of simple trading rules derived from the fractal dynamics of gold and silver price fluctuations," Finance Research Letters, Elsevier, vol. 16(C), pages 255-267.
    11. Jebabli, Ikram & Roubaud, David, 2018. "Time-varying efficiency in food and energy markets: Evidence and implications," Economic Modelling, Elsevier, vol. 70(C), pages 97-114.
    12. Pirino, Davide, 2009. "Jump detection and long range dependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1150-1156.
    13. Karakatsanis, L.P. & Pavlos, G.P. & Iliopoulos, A.C. & Pavlos, E.G. & Clark, P.M. & Duke, J.L. & Monos, D.S., 2018. "Assessing information content and interactive relationships of subgenomic DNA sequences of the MHC using complexity theory approaches based on the non-extensive statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 77-93.
    14. Thiago B. Murari & Aloisio S. Nascimento Filho & Marcelo A. Moret & Sergio Pitombo & Alex A. B. Santos, 2020. "Self-Affine Analysis of ENSO in Solar Radiation," Energies, MDPI, vol. 13(18), pages 1-17, September.
    15. A. Gómez-Águila & J. E. Trinidad-Segovia & M. A. Sánchez-Granero, 2022. "Improvement in Hurst exponent estimation and its application to financial markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-21, December.
    16. Garcin, Matthieu, 2017. "Estimation of time-dependent Hurst exponents with variational smoothing and application to forecasting foreign exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 462-479.
    17. Jahanshahi, Hadi & Munoz-Pacheco, Jesus M. & Bekiros, Stelios & Alotaibi, Naif D., 2021. "A fractional-order SIRD model with time-dependent memory indexes for encompassing the multi-fractional characteristics of the COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    18. Grith, Maria & Härdle, Wolfgang Karl & Kneip, Alois & Wagner, Heiko, 2016. "Functional principal component analysis for derivatives of multivariate curves," SFB 649 Discussion Papers 2016-033, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    19. Yuke Zhou & Junfu Fan & Xiaoying Wang, 2020. "Assessment of varying changes of vegetation and the response to climatic factors using GIMMS NDVI3g on the Tibetan Plateau," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-25, June.
    20. Kristoufek, Ladislav, 2018. "Fractality in market risk structure: Dow Jones Industrial components case," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 69-75.
    21. Ladislav Krištoufek, 2010. "Dlouhá paměť a její vývoj ve výnosech burzovního indexu PX v letech 1997-2009 [Long-Term Memory and Its Evolution in Returns of Stock Index PX Between 1997 and 2009]," Politická ekonomie, Prague University of Economics and Business, vol. 2010(4), pages 471-487.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0085787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.