IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v483y2017icp462-479.html
   My bibliography  Save this article

Estimation of time-dependent Hurst exponents with variational smoothing and application to forecasting foreign exchange rates

Author

Listed:
  • Garcin, Matthieu

Abstract

Hurst exponents depict the long memory of a time series. For human-dependent phenomena, as in finance, this feature may vary in the time. It justifies modelling dynamics by multifractional Brownian motions, which are consistent with time-dependent Hurst exponents. We improve the existing literature on estimating time-dependent Hurst exponents by proposing a smooth estimate obtained by variational calculus. This method is very general and not restricted to the sole Hurst framework. It is globally more accurate and easier than other existing non-parametric estimation techniques. Besides, in the field of Hurst exponents, it makes it possible to make forecasts based on the estimated multifractional Brownian motion. The application to high-frequency foreign exchange markets (GBP, CHF, SEK, USD, CAD, AUD, JPY, CNY and SGD, all against EUR) shows significantly good forecasts. When the Hurst exponent is higher than 0.5, what depicts a long-memory feature, the accuracy is higher.

Suggested Citation

  • Garcin, Matthieu, 2017. "Estimation of time-dependent Hurst exponents with variational smoothing and application to forecasting foreign exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 462-479.
  • Handle: RePEc:eee:phsmap:v:483:y:2017:i:c:p:462-479
    DOI: 10.1016/j.physa.2017.04.122
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711730434X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.04.122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthieu Garcin & Clément Goulet, 2015. "Non-parameteric news impact curve: a variational approach," Documents de travail du Centre d'Economie de la Sorbonne 15086r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Jul 2016.
    2. Weron, Rafał, 2002. "Estimating long-range dependence: finite sample properties and confidence intervals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 285-299.
    3. repec:ebl:ecbull:v:7:y:2007:i:1:p:1-11 is not listed on IDEAS
    4. Bardet, Jean-Marc & Surgailis, Donatas, 2013. "Nonparametric estimation of the local Hurst function of multifractional Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 1004-1045.
    5. Matthieu Garcin & Dominique Guegan, 2012. "Extreme values of random or chaotic discretization steps," Post-Print hal-00706825, HAL.
    6. Antoine Ayache & Jacques Vehel, 2000. "The Generalized Multifractional Brownian Motion," Statistical Inference for Stochastic Processes, Springer, vol. 3(1), pages 7-18, January.
    7. Sergio Da Silva & Annibal Figueiredo & Iram Gleria & Raul Matsushita, 2007. "Hurst exponents, power laws, and efficiency in the Brazilian foreign exchange market," Economics Bulletin, AccessEcon, vol. 7(1), pages 1-11.
    8. Grech, Dariusz & Pamuła, Grzegorz, 2008. "The local Hurst exponent of the financial time series in the vicinity of crashes on the Polish stock exchange market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4299-4308.
    9. Peter Hall & Wolfgang Härdle & Torsten Kleinow & Peter Schmidt, 2000. "Semiparametric Bootstrap Approach to Hypothesis Tests and Confidence Intervals for the Hurst Coefficient," Statistical Inference for Stochastic Processes, Springer, vol. 3(3), pages 263-276, October.
    10. Alvarez-Ramirez, Jose & Alvarez, Jesus & Rodriguez, Eduardo & Fernandez-Anaya, Guillermo, 2008. "Time-varying Hurst exponent for US stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6159-6169.
    11. Pal, Mayukha & Madhusudana Rao, P. & Manimaran, P., 2014. "Multifractal detrended cross-correlation analysis on gold, crude oil and foreign exchange rate time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 452-460.
    12. Matthieu Garcin & Dominique Guegan, 2012. "Extreme values of random or chaotic discretization steps," Documents de travail du Centre d'Economie de la Sorbonne 12033, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    13. Benassi, Albert & Cohen, Serge & Istas, Jacques, 1998. "Identifying the multifractional function of a Gaussian process," Statistics & Probability Letters, Elsevier, vol. 39(4), pages 337-345, August.
    14. Dutta, Srimonti & Ghosh, Dipak & Chatterjee, Sucharita, 2016. "Multifractal detrended Cross Correlation Analysis of Foreign Exchange and SENSEX fluctuation in Indian perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 188-201.
    15. Weinert, Howard L., 2007. "Efficient computation for Whittaker-Henderson smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 959-974, October.
    16. Dominique Guegan & Matthieu Garcin, 2012. "Extreme values of random or chaotic discretization steps and connected networks," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00750231, HAL.
    17. Morales, Raffaello & Di Matteo, T. & Gramatica, Ruggero & Aste, Tomaso, 2012. "Dynamical generalized Hurst exponent as a tool to monitor unstable periods in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3180-3189.
    18. Li, Wei-Shen & Tsai, Yun-Jie & Shen, Yu-Hsien & Liaw, Sy-Sang, 2016. "General and specific statistical properties of foreign exchange markets during a financial crash," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 601-622.
    19. Ausloos, M., 2000. "Statistical physics in foreign exchange currency and stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 285(1), pages 48-65.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthieu Garcin, 2019. "Fractal analysis of the multifractality of foreign exchange rates [Analyse fractale de la multifractalité des taux de change]," Working Papers hal-02283915, HAL.
    2. Zunino, Luciano & Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Monitoring the informational efficiency of European corporate bond markets with dynamical permutation min-entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 1-9.
    3. Adam Karp & Gary Van Vuuren, 2019. "Investment Implications Of The Fractal Market Hypothesis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-27, March.
    4. Mulligan, Robert F., 2017. "The multifractal character of capacity utilization over the business cycle: An application of Hurst signature analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 63(C), pages 147-152.
    5. Matthieu Garcin & Dominique Guegan, 2013. "Probability density of the wavelet coefficients of a noisy chaos," Documents de travail du Centre d'Economie de la Sorbonne 13015, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    6. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2018. "A novel multivariate risk measure: the Kendall VaR," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01467857, HAL.
    7. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2018. "A novel multivariate risk measure: the Kendall VaR," Post-Print halshs-01467857, HAL.
    8. Un, Kuok Sin & Ausloos, Marcel, 2022. "Equity premium prediction: Taking into account the role of long, even asymmetric, swings in stock market behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
    9. Mynhardt, H. R. & Plastun, Alex & Makarenko, Inna, 2014. "Behavior of Financial Markets Efficiency During the Financial Market Crisis: 2007-2009," MPRA Paper 58942, University Library of Munich, Germany.
    10. Anagnostidis, P. & Varsakelis, C. & Emmanouilides, C.J., 2016. "Has the 2008 financial crisis affected stock market efficiency? The case of Eurozone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 116-128.
    11. Mulligan, Robert F., 2014. "Multifractality of sectoral price indices: Hurst signature analysis of Cantillon effects in disequilibrium factor markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 252-264.
    12. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2017. "A novel multivariate risk measure: the Kendall VaR," Documents de travail du Centre d'Economie de la Sorbonne 17008, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    13. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2017. "A novel multivariate risk measure: the Kendall VaR," Documents de travail du Centre d'Economie de la Sorbonne 17008r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Apr 2018.
    14. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    15. Akash P. POOJARI & Siva Kiran GUPTHA & G Raghavender RAJU, 2022. "Multifractal analysis of equities. Evidence from the emerging and frontier banking sectors," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(3(632), A), pages 61-80, Autumn.
    16. Benjamin Rainer Auer, 2018. "Are standard asset pricing factors long-range dependent?," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 42(1), pages 66-88, January.
    17. Vogl, Markus, 2023. "Hurst exponent dynamics of S&P 500 returns: Implications for market efficiency, long memory, multifractality and financial crises predictability by application of a nonlinear dynamics analysis framewo," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    18. Matthieu Garcin & Dominique Guegan, 2013. "Probability density of the wavelet coefficients of a noisy chaos," Post-Print hal-00800997, HAL.
    19. Pakrashi, Vikram & Kelly, Joe & Harkin, Julie & Farrell, Aidan, 2013. "Hurst exponent footprints from activities on a large structural system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1803-1817.
    20. Ioannis P. Antoniades & Leonidas P. Karakatsanis & Evgenios G. Pavlos, 2020. "Dynamical Characteristics of Global Stock Markets Based on Time Dependent Tsallis Non-Extensive Statistics and Generalized Hurst Exponents," Papers 2012.06856, arXiv.org, revised Apr 2021.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:483:y:2017:i:c:p:462-479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.