IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1001089.html
   My bibliography  Save this article

Transition from Persistent to Anti-Persistent Correlations in Postural Sway Indicates Velocity-Based Control

Author

Listed:
  • Didier Delignières
  • Kjerstin Torre
  • Pierre-Louis Bernard

Abstract

The displacement of the center-of-pressure (COP) during quiet stance has often been accounted for by the control of COP position dynamics. In this paper, we discuss the conclusions drawn from previous analyses of COP dynamics using fractal-related methods. On the basis of some methodological clarification and the analysis of experimental data using stabilogram diffusion analysis, detrended fluctuation analysis, and an improved version of spectral analysis, we show that COP velocity is typically bounded between upper and lower limits. We argue that the hypothesis of an intermittent velocity-based control of posture is more relevant than position-based control. A simple model for COP velocity dynamics, based on a bounded correlated random walk, reproduces the main statistical signatures evidenced in the experimental series. The implications of these results are discussed.Author Summary: Postural control during quiet standing is usually conceived of as the control of position: when position goes beyond a given threshold, corrective mechanisms are engaged to restore equilibrium. In this paper, we question this conception and show that postural control is based on an intermittent control of velocity, with a reversal in its dynamics when the absolute value of velocity reaches a given threshold. This hypothesis presents some counterintuitive implications. Notably, it means that the active control or correction processes do not intervene at the periphery of postural sways, as generally assumed. According to our findings, control occurs in the central region of the posturogram, where velocity reaches its maximal absolute values. The present study suggests new variables of interest in the study of postural control, especially the maximal absolute velocity of the center-of-pressure, which could describe and predict postural disorders.

Suggested Citation

  • Didier Delignières & Kjerstin Torre & Pierre-Louis Bernard, 2011. "Transition from Persistent to Anti-Persistent Correlations in Postural Sway Indicates Velocity-Based Control," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-10, February.
  • Handle: RePEc:plo:pcbi00:1001089
    DOI: 10.1371/journal.pcbi.1001089
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001089
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1001089&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1001089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marietta Kirchner & Patric Schubert & Magnus Liebherr & Christian T Haas, 2014. "Detrended Fluctuation Analysis and Adaptive Fractal Analysis of Stride Time Data in Parkinson's Disease: Stitching Together Short Gait Trials," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-6, January.
    2. Delignières, Didier & Marmelat, Vivien, 2014. "Strong anticipation and long-range cross-correlation: Application of detrended cross-correlation analysis to human behavioral data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 47-60.
    3. Thiago B. Murari & Aloisio S. Nascimento Filho & Marcelo A. Moret & Sergio Pitombo & Alex A. B. Santos, 2020. "Self-Affine Analysis of ENSO in Solar Radiation," Energies, MDPI, vol. 13(18), pages 1-17, September.
    4. Kirchner, M. & Schubert, P. & Schmidtbleicher, D. & Haas, C.T., 2012. "Evaluation of the temporal structure of postural sway fluctuations based on a comprehensive set of analysis tools," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4692-4703.
    5. Julius Verrel & Didier Pradon & Nicolas Vuillerme, 2012. "Persistence of Motor-Equivalent Postural Fluctuations during Bipedal Quiet Standing," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-8, October.
    6. Okano, Masahiro & Kurebayashi, Wataru & Shinya, Masahiro & Kudo, Kazutoshi, 2019. "Hybrid dynamics in a paired rhythmic synchronization–continuation task," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 625-638.
    7. Almurad, Zainy M.H. & Delignières, Didier, 2016. "Evenly spacing in Detrended Fluctuation Analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 63-69.
    8. Hannah M. Douglas & Stacie Furst-Holloway & Stephanie R. Chaudoir & Michael J. Richardson & Rachel W. Kallen, 2022. "Embodiment of concealable stigma disclosure through dynamics of movement and language," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1001089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.