IDEAS home Printed from https://ideas.repec.org/p/wuu/wpaper/hsc0103.html
   My bibliography  Save this paper

Estimating long range dependence: finite sample properties and confidence intervals

Author

Listed:
  • Rafal Weron

Abstract

A major issue in financial economics is the behavior of asset returns over long horizons. Various estimators of long range dependence have been proposed. Even though some have known asymptotic properties, it is important to test their accuracy by using simulated series of different lengths. We test R/S analysis, Detrended Fluctuation Analysis and periodogram regression methods on samples drawn from Gaussian white noise. The DFA statistics turns out to be the unanimous winner. Unfortunately, no asymptotic distribution theory has been derived for this statistics so far. We were able, however, to construct empirical (i.e. approximate) confidence intervals for all three methods. The obtained values differ largely from heuristic values proposed by some authors for the R/S statistics and are very close to asymptotic values for the periodogram regression method.

Suggested Citation

  • Rafal Weron, 2001. "Estimating long range dependence: finite sample properties and confidence intervals," HSC Research Reports HSC/01/03, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
  • Handle: RePEc:wuu:wpaper:hsc0103
    DOI: 10.1016/S0378-4371(02)00961-5
    as

    Download full text from publisher

    File URL: http://www.im.pwr.wroc.pl/~hugo/RePEc/wuu/wpaper/HSC_01_03.pdf
    File Function: Final draft, 2001
    Download Restriction: no

    File URL: http://dx.doi.org/10.1016/S0378-4371(02)00961-5
    File Function: Final printed version, 2002
    Download Restriction: Yes

    File URL: https://libkey.io/10.1016/S0378-4371(02)00961-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Baillie, Richard T. & King, Maxwell L., 1996. "Editors' introduction: Fractional differencing and long memory processes," Journal of Econometrics, Elsevier, vol. 73(1), pages 1-3, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jr‐Wei Huang & Sharon S. Yang & Chuang‐Chang Chang, 2018. "Modeling temperature behaviors: Application to weather derivative valuation," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(9), pages 1152-1175, September.
    2. Ibrahim A. ONOUR & Bruno S. SERGI, 2011. "Modeling and forecasting volatility in global food commodity prices," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 57(3), pages 132-139.
    3. Emma Iglesias & Garry Phillips, 2005. "Analysing one-month Euro-market interest rates by fractionally integrated models," Applied Financial Economics, Taylor & Francis Journals, vol. 15(2), pages 95-106.
    4. Abderrazak Ben Maatoug & Rim Lamouchi & Russell Davidson & Ibrahim Fatnassi, 2018. "Modelling Foreign Exchange Realized Volatility Using High Frequency Data: Long Memory versus Structural Breaks," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 1-25, March.
    5. Zhang, Yu & Li, Yanting & Zhang, Guangyao, 2020. "Short-term wind power forecasting approach based on Seq2Seq model using NWP data," Energy, Elsevier, vol. 213(C).
    6. Boubaker, Heni & Zorgati, Mouna Ben Saad & Bannour, Nawres, 2021. "Interdependence between exchange rates: Evidence from multivariate analysis since the financial crisis to the COVID-19 crisis," Economic Analysis and Policy, Elsevier, vol. 71(C), pages 592-608.
    7. Jorge V Pérez-Rodríguez & María Santana-Gallego, 2020. "Modelling tourism receipts and associated risks, using long-range dependence models," Tourism Economics, , vol. 26(1), pages 70-96, February.
    8. Rafal Weron, 2001. "Measuring long-range dependence in electricity prices," Papers cond-mat/0103621, arXiv.org.

    More about this item

    Keywords

    Long-range dependence; Hurst exponent; R/S analysis; Detrended Fluctuation Analysis; Periodogram regression; Confidence interval;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wuu:wpaper:hsc0103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rafal Weron (email available below). General contact details of provider: https://edirc.repec.org/data/hspwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.