IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v70y2018icp97-114.html
   My bibliography  Save this article

Time-varying efficiency in food and energy markets: Evidence and implications

Author

Listed:
  • Jebabli, Ikram
  • Roubaud, David

Abstract

This paper analyses weak-form efficiency in daily spot and futures prices in the food and energy markets, given the simultaneous volatilities characterising prices in both markets. To determine the structural breaks and efficiency changes over time, we use the time-varying rolling Hurst exponent and threshold vector error correction models. Our main findings indicate that all of the studied commodities exhibit long-term efficiency and short-term inefficiencies that can be explained by global economic conditions: the 2008 global financial crisis, financialisation of commodities markets, and fluctuations in crude oil prices. Time-varying optimal weights minimising the portfolio risk show different patterns between food and crude oil. In terms of hedging effectiveness, food futures are better than crude oil futures. Therefore, optimal portfolios risk hedging requires an adequate rebalancing between spot and futures prices depending on markets conditions and the type of commodities considered. Investigation of the semi-strong efficiency form of these markets through the consideration of intra-day prices could constitute a future extension of the present work.

Suggested Citation

  • Jebabli, Ikram & Roubaud, David, 2018. "Time-varying efficiency in food and energy markets: Evidence and implications," Economic Modelling, Elsevier, vol. 70(C), pages 97-114.
  • Handle: RePEc:eee:ecmode:v:70:y:2018:i:c:p:97-114
    DOI: 10.1016/j.econmod.2017.10.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999317305151
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2017.10.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hosseinzadeh, Ahmad & Smyth, Russell & Valadkhani, Abbas & Le, Viet, 2016. "Analyzing the efficiency performance of major Australian mining companies using bootstrap data envelopment analysis," Economic Modelling, Elsevier, vol. 57(C), pages 26-35.
    2. Hansen, Bruce E. & Seo, Byeongseon, 2002. "Testing for two-regime threshold cointegration in vector error-correction models," Journal of Econometrics, Elsevier, vol. 110(2), pages 293-318, October.
    3. Jawadi, Fredj & Ftiti, Zied & Hdia, Mouna, 2017. "Assessing efficiency and investment opportunities in commodities: A time series and portfolio simulations approach," Economic Modelling, Elsevier, vol. 64(C), pages 567-588.
    4. Arouri, Mohamed El Hedi & Hammoudeh, Shawkat & Lahiani, Amine & Nguyen, Duc Khuong, 2013. "On the short- and long-run efficiency of energy and precious metal markets," Energy Economics, Elsevier, vol. 40(C), pages 832-844.
    5. Rui Fan & Haiqi Li & Sung Y. Park, 2016. "Estimation and Hedging Effectiveness of Time‐Varying Hedge Ratio: Nonparametric Approaches," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(10), pages 968-991, October.
    6. Chang, Chun-Ping & Lee, Chien-Chiang, 2015. "Do oil spot and futures prices move together?," Energy Economics, Elsevier, vol. 50(C), pages 379-390.
    7. Jebabli, Ikram & Arouri, Mohamed & Teulon, Frédéric, 2014. "On the effects of world stock market and oil price shocks on food prices: An empirical investigation based on TVP-VAR models with stochastic volatility," Energy Economics, Elsevier, vol. 45(C), pages 66-98.
    8. Algieri, Bernardina, 2014. "The influence of biofuels, economic and financial factors on daily returns of commodity futures prices," Energy Policy, Elsevier, vol. 69(C), pages 227-247.
    9. Mellios, Constantin & Six, Pierre & Lai, Anh Ngoc, 2016. "Dynamic speculation and hedging in commodity futures markets with a stochastic convenience yield," European Journal of Operational Research, Elsevier, vol. 250(2), pages 493-504.
    10. Jian Yang & Titus Awokuse, 2003. "Asset storability and hedging effectiveness in commodity futures markets," Applied Economics Letters, Taylor & Francis Journals, vol. 10(8), pages 487-491.
    11. repec:bla:jfinan:v:55:y:2000:i:4:p:1655-1703 is not listed on IDEAS
    12. He, Ling-Yun & Qian, Wen-Bin, 2012. "A Monte Carlo simulation to the performance of the R/S and V/S methods—Statistical revisit and real world application," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(14), pages 3770-3782.
    13. Lardic, Sandrine & Mignon, Valérie, 2008. "Oil prices and economic activity: An asymmetric cointegration approach," Energy Economics, Elsevier, vol. 30(3), pages 847-855, May.
    14. Nicole M. Aulerich & Raymond P. H. Fishe & Jeffrey H. Harris, 2011. "Why do expiring futures and cash prices diverge for grain markets?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(6), pages 503-533, June.
    15. repec:bla:jecsur:v:13:y:1999:i:5:p:551-76 is not listed on IDEAS
    16. Grossman, Sanford J & Stiglitz, Joseph E, 1980. "On the Impossibility of Informationally Efficient Markets," American Economic Review, American Economic Association, vol. 70(3), pages 393-408, June.
    17. Yuan-Hung Hsu Ku & Ho-Chyuan Chen & Kuang-Hua Chen, 2007. "On the application of the dynamic conditional correlation model in estimating optimal time-varying hedge ratios," Applied Economics Letters, Taylor & Francis Journals, vol. 14(7), pages 503-509.
    18. Russ Wermers, 2000. "Mutual Fund Performance: An Empirical Decomposition into Stock‐Picking Talent, Style, Transactions Costs, and Expenses," Journal of Finance, American Finance Association, vol. 55(4), pages 1655-1695, August.
    19. repec:cii:cepiie:2014-q4-140-60 is not listed on IDEAS
    20. Chiu, Fan-Ping & Hsu, Chia-Sheng & Ho, Alan & Chen, Chi-Chung, 2016. "Modeling the price relationships between crude oil, energy crops and biofuels," Energy, Elsevier, vol. 109(C), pages 845-857.
    21. Sensoy, Ahmet & Hacihasanoglu, Erk, 2014. "Time-varying long range dependence in energy futures markets," Energy Economics, Elsevier, vol. 46(C), pages 318-327.
    22. Jeffrey A. Busse & Amit Goyal & Sunil Wahal, 2010. "Performance and Persistence in Institutional Investment Management," Journal of Finance, American Finance Association, vol. 65(2), pages 765-790, April.
    23. Walid Mensi & Makram Beljid & Shunsuke Managi, 2014. "Structural breaks and the time-varying levels of weak-form efficiency in crude oil markets: Evidence from the Hurst exponent and Shannon entropy methods," International Economics, CEPII research center, issue 140, pages 89-106.
    24. Kristoufek, Ladislav & Vosvrda, Miloslav, 2014. "Commodity futures and market efficiency," Energy Economics, Elsevier, vol. 42(C), pages 50-57.
    25. Barunik, Jozef & Kristoufek, Ladislav, 2010. "On Hurst exponent estimation under heavy-tailed distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(18), pages 3844-3855.
    26. repec:cii:cepiei:2014-q4-140-6 is not listed on IDEAS
    27. Andrew McKenzie & Matthew Holt, 2002. "Market efficiency in agricultural futures markets," Applied Economics, Taylor & Francis Journals, vol. 34(12), pages 1519-1532.
    28. Cajueiro, Daniel O & Tabak, Benjamin M, 2004. "The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 521-537.
    29. Martin Martens & Paul Kofman & Ton C. F. Vorst, 1998. "A threshold error-correction model for intraday futures and index returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(3), pages 245-263.
    30. François Lescaroux & Valérie Mignon, 2008. "On the Influence of Oil Prices on Economic Activity and Other Macroeconomic and Financial Variables," Working Papers 2008-05, CEPII research center.
    31. C. Pederzoli & C. Torricelli, 2013. "Efficiency and unbiasedness of corn futures markets: new evidence across the financial crisis," Applied Financial Economics, Taylor & Francis Journals, vol. 23(24), pages 1853-1863, December.
    32. Fernandez, Viviana, 2017. "A historical perspective of the informational content of commodity futures," Resources Policy, Elsevier, vol. 51(C), pages 135-150.
    33. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    34. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2011. "Crude oil hedging strategies using dynamic multivariate GARCH," Energy Economics, Elsevier, vol. 33(5), pages 912-923, September.
    35. Kroner, Kenneth F. & Sultan, Jahangir, 1993. "Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(4), pages 535-551, December.
    36. Bampinas, Georgios & Panagiotidis, Theodore, 2016. "Hedging inflation with individual US stocks: A long-run portfolio analysis," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 374-392.
    37. Seo, Byeongseon, 2003. "Nonlinear mean reversion in the term structure of interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 27(11), pages 2243-2265.
    38. Ruan, Qingsong & Huang, Ying & Jiang, Wei, 2016. "The exceedance and cross-correlations between the gold spot and futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 139-151.
    39. Chiara Pederzoli & Costanza Torricelli, 2013. "Efficiency and unbiasedness of corn futures markets: New evidence across the financial crisis," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 0040, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    40. Sensoy, Ahmet & Hacihasanoglu, Erk & Nguyen, Duc Khuong, 2015. "Dynamic convergence of commodity futures: Not all types of commodities are alike," Resources Policy, Elsevier, vol. 44(C), pages 150-160.
    41. Olson, Eric & J. Vivian, Andrew & Wohar, Mark E., 2014. "The relationship between energy and equity markets: Evidence from volatility impulse response functions," Energy Economics, Elsevier, vol. 43(C), pages 297-305.
    42. Andriosopoulos, Kostas & Nomikos, Nikos, 2014. "Performance replication of the Spot Energy Index with optimal equity portfolio selection: Evidence from the UK, US and Brazilian markets," European Journal of Operational Research, Elsevier, vol. 234(2), pages 571-582.
    43. Kristoufek, Ladislav & Vosvrda, Miloslav, 2013. "Measuring capital market efficiency: Global and local correlations structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 184-193.
    44. Manolis G. Kavussanos & Nikos K. Nomikos, 2000. "Futures hedging when the structure of the underlying asset changes: The case of the BIFFEX contract," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 20(8), pages 775-801, September.
    45. Zhang, Bing, 2013. "Are the crude oil markets becoming more efficient over time? New evidence from a generalized spectral test," Energy Economics, Elsevier, vol. 40(C), pages 875-881.
    46. Bruce Hansen, 1999. "Testing for Linearity," Journal of Economic Surveys, Wiley Blackwell, vol. 13(5), pages 551-576, December.
    47. Hansen,B.E., 1999. "Testing for linearity," Working papers 7, Wisconsin Madison - Social Systems.
    48. Baillie, Richard T & Myers, Robert J, 1991. "Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(2), pages 109-124, April-Jun.
    49. Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
    50. Elie Bouri & Imad Kachacha & Donald Lien & David Roubaud, 2017. "Short- and long-run causality across the implied volatility of crude oil and agricultural commodities," Economics Bulletin, AccessEcon, vol. 37(2).
    51. Wang, Yudong & Wu, Chongfeng, 2012. "Long memory in energy futures markets: Further evidence," Resources Policy, Elsevier, vol. 37(3), pages 261-272.
    52. Zhong, Maosen & Darrat, Ali F. & Otero, Rafael, 2004. "Price discovery and volatility spillovers in index futures markets: Some evidence from Mexico," Journal of Banking & Finance, Elsevier, vol. 28(12), pages 3037-3054, December.
    53. Ching-Chun Wei & Shu-Min Chen, 2016. "Examining the Relationship of Crude Oil Future Price Return and Agricultural Future Price Return in US," International Journal of Energy Economics and Policy, Econjournals, vol. 6(1), pages 58-64.
    54. Menzie D. Chinn & Olivier Coibion, 2014. "The Predictive Content of Commodity Futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(7), pages 607-636, July.
    55. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    56. Rodriguez, E. & Aguilar-Cornejo, M. & Femat, R. & Alvarez-Ramirez, J., 2014. "US stock market efficiency over weekly, monthly, quarterly and yearly time scales," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 554-564.
    57. Kroner, Kenneth F & Ng, Victor K, 1998. "Modeling Asymmetric Comovements of Asset Returns," The Review of Financial Studies, Society for Financial Studies, vol. 11(4), pages 817-844.
    58. Lardic, Sandrine & Mignon, Valerie, 2006. "The impact of oil prices on GDP in European countries: An empirical investigation based on asymmetric cointegration," Energy Policy, Elsevier, vol. 34(18), pages 3910-3915, December.
    59. Weron, Rafał, 2002. "Estimating long-range dependence: finite sample properties and confidence intervals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 285-299.
    60. López Cabrera, Brenda & Schulz, Franziska, 2016. "Volatility linkages between energy and agricultural commodity prices," Energy Economics, Elsevier, vol. 54(C), pages 190-203.
    61. Lo, Ming Chien & Zivot, Eric, 2001. "Threshold Cointegration And Nonlinear Adjustment To The Law Of One Price," Macroeconomic Dynamics, Cambridge University Press, vol. 5(4), pages 533-576, September.
    62. Zhang, Bing & Li, Xiao-Ming & He, Fei, 2014. "Testing the evolution of crude oil market efficiency: Data have the conn," Energy Policy, Elsevier, vol. 68(C), pages 39-52.
    63. Chen, Pei-Fen & Lee, Chien-Chiang & Zeng, Jhih-Hong, 2014. "The relationship between spot and futures oil prices: Do structural breaks matter?," Energy Economics, Elsevier, vol. 43(C), pages 206-217.
    64. Ladislav Kristoufek, 2012. "Fractal Markets Hypothesis And The Global Financial Crisis: Scaling, Investment Horizons And Liquidity," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 15(06), pages 1-13.
    65. Liyan Han & Ziying Li & Libo Yin, 2017. "The effects of investor attention on commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 37(10), pages 1031-1049, October.
    66. Seo, Byeongseon, 2003. "Nonlinear mean reversion in the term structure of interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 27(11-12), pages 2243-2265, September.
    67. Donald Lien & Y. K. Tse, 2002. "Some Recent Developments in Futures Hedging," Journal of Economic Surveys, Wiley Blackwell, vol. 16(3), pages 357-396, July.
    68. Ma, Pengcheng & Li, Daye & Li, Shuo, 2016. "Efficiency and cross-correlation in equity market during global financial crisis: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 163-176.
    69. Jinghong Shu & Jin E. Zhang, 2012. "Causality in the VIX futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(1), pages 24-46, January.
    70. Yu-Lun Chen & Yin-Feng Gau & Wen-Ju Liao, 2016. "Trading activities and price discovery in foreign currency futures markets," Review of Quantitative Finance and Accounting, Springer, vol. 46(4), pages 793-818, May.
    71. Tokic, Damir, 2015. "The 2014 oil bust: Causes and consequences," Energy Policy, Elsevier, vol. 85(C), pages 162-169.
    72. Reboredo, Juan C., 2012. "Do food and oil prices co-move?," Energy Policy, Elsevier, vol. 49(C), pages 456-467.
    73. Nicholas Kaldor, 1939. "Speculation and Economic Stability," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 7(1), pages 1-27.
    74. repec:bla:jecsur:v:16:y:2002:i:3:p:357-96 is not listed on IDEAS
    75. Ortiz-Cruz, Alejandro & Rodriguez, Eduardo & Ibarra-Valdez, Carlos & Alvarez-Ramirez, Jose, 2012. "Efficiency of crude oil markets: Evidences from informational entropy analysis," Energy Policy, Elsevier, vol. 41(C), pages 365-373.
    76. repec:bla:opecrv:v:32:y:2008:i:4:p:343-380 is not listed on IDEAS
    77. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    78. Cajueiro, Daniel O. & Tabak, Benjamin M., 2004. "Evidence of long range dependence in Asian equity markets: the role of liquidity and market restrictions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(3), pages 656-664.
    79. Koirala, Krishna H. & Mishra, Ashok K. & D'Antoni, Jeremy M. & Mehlhorn, Joey E., 2015. "Energy prices and agricultural commodity prices: Testing correlation using copulas method," Energy, Elsevier, vol. 81(C), pages 430-436.
    80. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    81. Tokic, Damir, 2010. "The 2008 oil bubble: Causes and consequences," Energy Policy, Elsevier, vol. 38(10), pages 6009-6015, October.
    82. Go, You-How & Lau, Wee-Yeap, 2017. "Investor demand, market efficiency and spot-futures relation: Further evidence from crude palm oil," Resources Policy, Elsevier, vol. 53(C), pages 135-146.
    83. López Cabrera, Brenda & Schulz, Franziska, 2013. "Volatility linkages between energy and agricultural commodity prices," SFB 649 Discussion Papers 2013-042, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    84. Eugene F. Fama & Kenneth R. French, 2010. "Luck versus Skill in the Cross‐Section of Mutual Fund Returns," Journal of Finance, American Finance Association, vol. 65(5), pages 1915-1947, October.
    85. Robert J. Myers, 1991. "Estimating time‐varying optimal hedge ratios on futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 11(1), pages 39-53, February.
    86. Khediri, Karim Ben & Charfeddine, Lanouar, 2015. "Evolving efficiency of spot and futures energy markets: A rolling sample approach," Journal of Behavioral and Experimental Finance, Elsevier, vol. 6(C), pages 67-79.
    87. Beckmann, Joscha & Belke, Ansgar & Czudaj, Robert, 2014. "Regime-dependent adjustment in energy spot and futures markets," Economic Modelling, Elsevier, vol. 40(C), pages 400-409.
    88. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. ap Gwilym, Rhys & Ebrahim, M. Shahid & El Alaoui, Abdelkader O. & Rahman, Hamid & Taamouti, Abderrahim, 2020. "Financial frictions and the futures pricing puzzle," Economic Modelling, Elsevier, vol. 87(C), pages 358-371.
    2. Bernardina Algieri & Matthias Kalkuhl, 2019. "Efficiency and Forecast Performance of Commodity Futures Markets," American Journal of Economics and Business Administration, Science Publications, vol. 11(1), pages 19-34, June.
    3. JEBABLI, Ikram & KOUAISSAH, Noureddine & AROURI, Mohamed, 2022. "Volatility Spillovers between Stock and Energy Markets during Crises: A Comparative Assessment between the 2008 Global Financial Crisis and the Covid-19 Pandemic Crisis," Finance Research Letters, Elsevier, vol. 46(PA).
    4. Pal, Debdatta & Mitra, Subrata K., 2019. "Correlation dynamics of crude oil with agricultural commodities: A comparison between energy and food crops," Economic Modelling, Elsevier, vol. 82(C), pages 453-466.
    5. Mensi, Walid & Vo, Xuan Vinh & Kang, Sang Hoon, 2022. "Upward/downward multifractality and efficiency in metals futures markets: The impacts of financial and oil crises," Resources Policy, Elsevier, vol. 76(C).
    6. Wang, Xiaoyang, 2022. "Efficient markets are more connected: An entropy-based analysis of the energy, industrial metal and financial markets," Energy Economics, Elsevier, vol. 111(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sensoy, Ahmet & Hacihasanoglu, Erk, 2014. "Time-varying long range dependence in energy futures markets," Energy Economics, Elsevier, vol. 46(C), pages 318-327.
    2. Zunino, Luciano & Bariviera, Aurelio F. & Guercio, M. Belén & Martinez, Lisana B. & Rosso, Osvaldo A., 2016. "Monitoring the informational efficiency of European corporate bond markets with dynamical permutation min-entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 1-9.
    3. Ladislav Kristoufek & Miloslav Vosvrda, 2014. "Measuring capital market efficiency: long-term memory, fractal dimension and approximate entropy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(7), pages 1-9, July.
    4. Tiwari, Aviral Kumar & Umar, Zaghum & Alqahtani, Faisal, 2021. "Existence of long memory in crude oil and petroleum products: Generalised Hurst exponent approach," Research in International Business and Finance, Elsevier, vol. 57(C).
    5. Sensoy, Ahmet & Tabak, Benjamin M., 2015. "Time-varying long term memory in the European Union stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 147-158.
    6. Cheng, Sheng & Cao, Yan, 2019. "On the relation between global food and crude oil prices: An empirical investigation in a nonlinear framework," Energy Economics, Elsevier, vol. 81(C), pages 422-432.
    7. Ma, Pengcheng & Li, Daye & Li, Shuo, 2016. "Efficiency and cross-correlation in equity market during global financial crisis: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 163-176.
    8. Yahya, Muhammad & Oglend, Atle & Dahl, Roy Endré, 2019. "Temporal and spectral dependence between crude oil and agricultural commodities: A wavelet-based copula approach," Energy Economics, Elsevier, vol. 80(C), pages 277-296.
    9. Tiwari, Aviral Kumar & Kumar, Satish & Pathak, Rajesh & Roubaud, David, 2019. "Testing the oil price efficiency using various measures of long-range dependence," Energy Economics, Elsevier, vol. 84(C).
    10. Auer, Benjamin R., 2016. "On time-varying predictability of emerging stock market returns," Emerging Markets Review, Elsevier, vol. 27(C), pages 1-13.
    11. Li, Daye & Nishimura, Yusaku & Men, Ming, 2016. "The long memory and the transaction cost in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 312-320.
    12. Corzo Santamaría, Teresa & Martin-Bujack, Karin & Portela, Jose & Sáenz-Diez, Rocio, 2022. "Early market efficiency testing among hydrogen players," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 723-742.
    13. Jena, Sangram Keshari & Tiwari, Aviral Kumar & Hammoudeh, Shawkat & Roubaud, David, 2019. "Distributional predictability between commodity spot and futures: Evidence from nonparametric causality-in-quantiles tests," Energy Economics, Elsevier, vol. 78(C), pages 615-628.
    14. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    15. Martínez, Beatriz & Torró, Hipòlit, 2015. "European natural gas seasonal effects on futures hedging," Energy Economics, Elsevier, vol. 50(C), pages 154-168.
    16. Guhathakurta, Kousik & Dash, Saumya Ranjan & Maitra, Debasish, 2020. "Period specific volatility spillover based connectedness between oil and other commodity prices and their portfolio implications," Energy Economics, Elsevier, vol. 85(C).
    17. López Cabrera, Brenda & Schulz, Franziska, 2016. "Volatility linkages between energy and agricultural commodity prices," Energy Economics, Elsevier, vol. 54(C), pages 190-203.
    18. JEBABLI, Ikram & KOUAISSAH, Noureddine & AROURI, Mohamed, 2022. "Volatility Spillovers between Stock and Energy Markets during Crises: A Comparative Assessment between the 2008 Global Financial Crisis and the Covid-19 Pandemic Crisis," Finance Research Letters, Elsevier, vol. 46(PA).
    19. Mensi, Walid & Vo, Xuan Vinh & Kang, Sang Hoon, 2022. "Upward/downward multifractality and efficiency in metals futures markets: The impacts of financial and oil crises," Resources Policy, Elsevier, vol. 76(C).
    20. Kristoufek, Ladislav & Vosvrda, Miloslav, 2014. "Commodity futures and market efficiency," Energy Economics, Elsevier, vol. 42(C), pages 50-57.

    More about this item

    Keywords

    Long-term efficiency; Short-term inefficiencies; Hedging; Rolling Hurst exponent; Threshold vector error correction model;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market
    • Q14 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Finance
    • Q18 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Agricultural Policy; Food Policy; Animal Welfare Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:70:y:2018:i:c:p:97-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.