IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0046505.html
   My bibliography  Save this article

When Does Overuse of Antibiotics Become a Tragedy of the Commons?

Author

Listed:
  • Travis C Porco
  • Daozhou Gao
  • James C Scott
  • Eunha Shim
  • Wayne T Enanoria
  • Alison P Galvani
  • Thomas M Lietman

Abstract

Background: Over-prescribing of antibiotics is considered to result in increased morbidity and mortality from drug-resistant organisms. A resulting common wisdom is that it would be better for society if physicians would restrain their prescription of antibiotics. In this view, self-interest and societal interest are at odds, making antibiotic use a classic “tragedy of the commons”. Methods and Findings: We developed two mathematical models of transmission of antibiotic resistance, featuring de novo development of resistance and transmission of resistant organisms. We analyzed the decision to prescribe antibiotics as a mathematical game, by analyzing individual incentives and community outcomes. Conclusions: A conflict of interest may indeed result, though not in all cases. Increased use of antibiotics by individuals benefits society under certain circumstances, despite the amplification of drug-resistant strains or organisms. In situations where increased use of antibiotics leads to less favorable outcomes for society, antibiotics may be harmful for the individual as well. For other scenarios, where a conflict between self-interest and society exists, restricting antibody use would benefit society. Thus, a case-by-case assessment of appropriate use of antibiotics may be warranted.

Suggested Citation

  • Travis C Porco & Daozhou Gao & James C Scott & Eunha Shim & Wayne T Enanoria & Alison P Galvani & Thomas M Lietman, 2012. "When Does Overuse of Antibiotics Become a Tragedy of the Commons?," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-12, December.
  • Handle: RePEc:plo:pone00:0046505
    DOI: 10.1371/journal.pone.0046505
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0046505
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0046505&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0046505?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kevin R Foster & Hajo Grundmann, 2006. "Do We Need to Put Society First? The Potential for Tragedy in Antimicrobial Resistance," PLOS Medicine, Public Library of Science, vol. 3(2), pages 1-1, January.
    2. Eunha Shim & Gretchen B. Chapman & Alison P. Galvani, 2010. "Decision Making with Regard to Antiviral Intervention during an Influenza Pandemic," Medical Decision Making, , vol. 30(4), pages 64-81, July.
    3. Carol Y. Lin, 2008. "Modeling Infectious Diseases in Humans and Animals by KEELING, M. J. and ROHANI, P," Biometrics, The International Biometric Society, vol. 64(3), pages 993-993, September.
    4. Telalagic, S., 2012. "Optimal Treatment of an SIS Disease with Two Strains," Cambridge Working Papers in Economics 1229, Faculty of Economics, University of Cambridge.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew M Colman & Eva M Krockow & Edmund Chattoe-Brown & Carolyn Tarrant, 2019. "Medical prescribing and antibiotic resistance: A game-theoretic analysis of a potentially catastrophic social dilemma," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-13, April.
    2. Albert, Jason, 2021. "Strategic dynamics of antibiotic use and the evolution of antibiotic-resistant infections," International Journal of Industrial Organization, Elsevier, vol. 77(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tyagi, Swati & Martha, Subash C. & Abbas, Syed & Debbouche, Amar, 2021. "Mathematical modeling and analysis for controlling the spread of infectious diseases," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    2. Kimberly M. Thompson, 2016. "Evolution and Use of Dynamic Transmission Models for Measles and Rubella Risk and Policy Analysis," Risk Analysis, John Wiley & Sons, vol. 36(7), pages 1383-1403, July.
    3. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    4. De Martino, Giuseppe & Spina, Serena, 2015. "Exploiting the time-dynamics of news diffusion on the Internet through a generalized Susceptible–Infected model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 634-644.
    5. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    6. Christel Kamp & Mathieu Moslonka-Lefebvre & Samuel Alizon, 2013. "Epidemic Spread on Weighted Networks," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-10, December.
    7. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    8. Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    9. Ofosuhene O Apenteng & Noor Azina Ismail, 2014. "The Impact of the Wavelet Propagation Distribution on SEIRS Modeling with Delay," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-9, June.
    10. Miguel Navascués & Costantino Budroni & Yelena Guryanova, 2021. "Disease control as an optimization problem," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-32, September.
    11. Frank Daumann & Florian Follert & Werner Gleißner & Endre Kamarás & Chantal Naumann, 2021. "Political Decision Making in the COVID-19 Pandemic: The Case of Germany from the Perspective of Risk Management," IJERPH, MDPI, vol. 19(1), pages 1-23, December.
    12. M Gabriela M Gomes & Marc Lipsitch & Andrew R Wargo & Gael Kurath & Carlota Rebelo & Graham F Medley & Antonio Coutinho, 2014. "A Missing Dimension in Measures of Vaccination Impacts," PLOS Pathogens, Public Library of Science, vol. 10(3), pages 1-3, March.
    13. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    14. Carnehl, Christoph & Fukuda, Satoshi & Kos, Nenad, 2023. "Epidemics with behavior," Journal of Economic Theory, Elsevier, vol. 207(C).
    15. Sterck, Olivier, 2016. "Natural resources and the spread of HIV/AIDS: Curse or blessing?," Social Science & Medicine, Elsevier, vol. 150(C), pages 271-278.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0046505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.