IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008388.html
   My bibliography  Save this article

A model-based evaluation of the efficacy of COVID-19 social distancing, testing and hospital triage policies

Author

Listed:
  • Audrey McCombs
  • Claus Kadelka

Abstract

A stochastic compartmental network model of SARS-CoV-2 spread explores the simultaneous effects of policy choices in three domains: social distancing, hospital triaging, and testing. Considering policy domains together provides insight into how different policy decisions interact. The model incorporates important characteristics of COVID-19, the disease caused by SARS-CoV-2, such as heterogeneous risk factors and asymptomatic transmission, and enables a reliable qualitative comparison of policy choices despite the current uncertainty in key virus and disease parameters. Results suggest possible refinements to current policies, including emphasizing the need to reduce random encounters more than personal contacts, and testing low-risk symptomatic individuals before high-risk symptomatic individuals. The strength of social distancing of symptomatic individuals affects the degree to which asymptomatic cases drive the epidemic as well as the level of population-wide contact reduction needed to keep hospitals below capacity. The relative importance of testing and triaging also depends on the overall level of social distancing.Author summary: Public health policies implemented to reduce the effects of COVID-19 can interact with each other, enhancing or undermining the effects of other policies employed simultaneously. Here, we present a mathematical model that incorporates many of the important characteristics of the outbreak, including differences in risk behavior and social activity due to demographics, and uncertainties related to asymptomatic cases. Our results suggest that reducing random community encounters is more important than reducing personal contacts, and that testing low-risk versus high-risk symptomatic individuals is most effective. Results also suggest that the effectiveness of a particular policy choice depends on what other policies are concurrently employed, and that policy makers should account for these interactions when considering which guidelines to implement.

Suggested Citation

  • Audrey McCombs & Claus Kadelka, 2020. "A model-based evaluation of the efficacy of COVID-19 social distancing, testing and hospital triage policies," PLOS Computational Biology, Public Library of Science, vol. 16(10), pages 1-18, October.
  • Handle: RePEc:plo:pcbi00:1008388
    DOI: 10.1371/journal.pcbi.1008388
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008388
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008388&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008388?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erik M Volz & Joel C Miller & Alison Galvani & Lauren Ancel Meyers, 2011. "Effects of Heterogeneous and Clustered Contact Patterns on Infectious Disease Dynamics," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-13, June.
    2. Neil M. Ferguson & Derek A. T. Cummings & Christophe Fraser & James C. Cajka & Philip C. Cooley & Donald S. Burke, 2006. "Strategies for mitigating an influenza pandemic," Nature, Nature, vol. 442(7101), pages 448-452, July.
    3. Roman Wölfel & Victor M. Corman & Wolfgang Guggemos & Michael Seilmaier & Sabine Zange & Marcel A. Müller & Daniela Niemeyer & Terry C. Jones & Patrick Vollmar & Camilla Rothe & Michael Hoelscher & To, 2020. "Virological assessment of hospitalized patients with COVID-2019," Nature, Nature, vol. 581(7809), pages 465-469, May.
    4. J. O. Lloyd-Smith & S. J. Schreiber & P. E. Kopp & W. M. Getz, 2005. "Superspreading and the effect of individual variation on disease emergence," Nature, Nature, vol. 438(7066), pages 355-359, November.
    5. Joël Mossong & Niel Hens & Mark Jit & Philippe Beutels & Kari Auranen & Rafael Mikolajczyk & Marco Massari & Stefania Salmaso & Gianpaolo Scalia Tomba & Jacco Wallinga & Janneke Heijne & Malgorzata Sa, 2008. "Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 5(3), pages 1-1, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad Akbarpour & Cody Cook & Aude Marzuoli & Simon Mongey & Abhishek Nagaraj & Matteo Saccarola & Pietro Tebaldi & Shoshana Vasserman & Hanbin Yang, 2020. "Socioeconomic Network Heterogeneity and Pandemic Policy Response," Working Papers 2020-75, Becker Friedman Institute for Research In Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    2. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    3. Žiga Zaplotnik & Aleksandar Gavrić & Luka Medic, 2020. "Simulation of the COVID-19 epidemic on the social network of Slovenia: Estimating the intrinsic forecast uncertainty," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-22, August.
    4. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    5. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    6. Thomas Ash & Antonio M. Bento & Daniel Kaffine & Akhil Rao & Ana I. Bento, 2022. "Disease-economy trade-offs under alternative epidemic control strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Christopher Bronk Ramsey, 2020. "Human agency and infection rates: Implications for social distancing during epidemics," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-17, December.
    8. Brotherhood, Luiz & Kircher, Philipp & Santos, Cezar & Tertilt, Michèle, 2023. "Optimal Age-based Policies for Pandemics: An Economic Analysis of Covid-19 and Beyond," IDB Publications (Working Papers) 13295, Inter-American Development Bank.
    9. Rakowski, Franciszek & Gruziel, Magdalena & Bieniasz-Krzywiec, Łukasz & Radomski, Jan P., 2010. "Influenza epidemic spread simulation for Poland — a large scale, individual based model study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3149-3165.
    10. Lawrence M. Wein & Michael P. Atkinson, 2009. "Assessing Infection Control Measures for Pandemic Influenza," Risk Analysis, John Wiley & Sons, vol. 29(7), pages 949-962, July.
    11. Calvin Pozderac & Brian Skinner, 2021. "Superspreading of SARS-CoV-2 in the USA," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-10, March.
    12. Janiak, Alexandre & Machado, Caio & Turén, Javier, 2021. "Covid-19 contagion, economic activity and business reopening protocols," Journal of Economic Behavior & Organization, Elsevier, vol. 182(C), pages 264-284.
    13. Wenting Yang & Jiantong Zhang & Ruolin Ma, 2020. "The Prediction of Infectious Diseases: A Bibliometric Analysis," IJERPH, MDPI, vol. 17(17), pages 1-19, August.
    14. Jos Lelieveld & Frank Helleis & Stephan Borrmann & Yafang Cheng & Frank Drewnick & Gerald Haug & Thomas Klimach & Jean Sciare & Hang Su & Ulrich Pöschl, 2020. "Model Calculations of Aerosol Transmission and Infection Risk of COVID-19 in Indoor Environments," IJERPH, MDPI, vol. 17(21), pages 1-18, November.
    15. Niklas Kappelt & Hugo Savill Russell & Szymon Kwiatkowski & Alireza Afshari & Matthew Stanley Johnson, 2021. "Correlation of Respiratory Aerosols and Metabolic Carbon Dioxide," Sustainability, MDPI, vol. 13(21), pages 1-11, November.
    16. Rachael M. Jones & Elodie Adida, 2013. "Selecting Nonpharmaceutical Interventions for Influenza," Risk Analysis, John Wiley & Sons, vol. 33(8), pages 1473-1488, August.
    17. Xi Guo & Abhineet Gupta & Anand Sampat & Chengwei Zhai, 2022. "A stochastic contact network model for assessing outbreak risk of COVID-19 in workplaces," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-23, January.
    18. Hend Alrasheed & Alhanoof Althnian & Heba Kurdi & Heila Al-Mgren & Sulaiman Alharbi, 2020. "COVID-19 Spread in Saudi Arabia: Modeling, Simulation and Analysis," IJERPH, MDPI, vol. 17(21), pages 1-24, October.
    19. Ichino, Andrea & Favero, Carlo A. & Rustichini, Aldo, 2020. "Restarting the economy while saving lives under Covid-19," CEPR Discussion Papers 14664, C.E.P.R. Discussion Papers.
    20. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.