IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0030893.html
   My bibliography  Save this article

Influence of Contact Definitions in Assessment of the Relative Importance of Social Settings in Disease Transmission Risk

Author

Listed:
  • Kirsty J Bolton
  • James M McCaw
  • Kristian Forbes
  • Paula Nathan
  • Garry Robins
  • Philippa Pattison
  • Terry Nolan
  • Jodie McVernon

Abstract

Background: Realistic models of disease transmission incorporating complex population heterogeneities require input from quantitative population mixing studies. We use contact diaries to assess the relative importance of social settings in respiratory pathogen spread using three measures of person contact hours (PCH) as proxies for transmission risk with an aim to inform bipartite network models of respiratory pathogen transmission. Methods and Findings: Our survey examines the contact behaviour for a convenience sample of 65 adults, with each encounter classified as occurring in a work, retail, home, social, travel or “other” setting. The diary design allows for extraction of PCH-interaction (cumulative time in face-face conversational or touch interaction with contacts) – analogous to the contact measure used in several existing surveys – as well as PCH-setting (product of time spent in setting and number of people present) and PCH-reach (product of time spent in setting and number of people in close proximity). Heterogeneities in day-dependent distribution of risk across settings are analysed using partitioning and cluster analyses and compared between days and contact measures. Although home is typically the highest-risk setting when PCH measures isolate two-way interactions, its relative importance compared to social and work settings may reduce when adopting a more inclusive contact measure that considers the number and duration of potential exposure events. Conclusions: Heterogeneities in location-dependent contact behaviour as measured by contact diary studies depend on the adopted contact definition. We find that contact measures isolating face-face conversational or touch interactions suggest that contact in the home dominates, whereas more inclusive contact measures indicate that home and work settings may be of higher importance. In the absence of definitive knowledge of the contact required to facilitate transmission of various respiratory pathogens, it is important for surveys to consider alternative contact measures.

Suggested Citation

  • Kirsty J Bolton & James M McCaw & Kristian Forbes & Paula Nathan & Garry Robins & Philippa Pattison & Terry Nolan & Jodie McVernon, 2012. "Influence of Contact Definitions in Assessment of the Relative Importance of Social Settings in Disease Transmission Risk," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
  • Handle: RePEc:plo:pone00:0030893
    DOI: 10.1371/journal.pone.0030893
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0030893
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0030893&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0030893?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nele Goeyvaerts & Niel Hens & Benson Ogunjimi & Marc Aerts & Ziv Shkedy & Pierre Van Damme & Philippe Beutels, 2010. "Estimating infectious disease parameters from data on social contacts and serological status," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 255-277, March.
    2. Peter Horby & Pham Quang Thai & Niel Hens & Nguyen Thi Thu Yen & Le Quynh Mai & Dang Dinh Thoang & Nguyen Manh Linh & Nguyen Thu Huong & Neal Alexander & W John Edmunds & Tran Nhu Duong & Annette Fox , 2011. "Social Contact Patterns in Vietnam and Implications for the Control of Infectious Diseases," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-7, February.
    3. Joël Mossong & Niel Hens & Mark Jit & Philippe Beutels & Kari Auranen & Rafael Mikolajczyk & Marco Massari & Stefania Salmaso & Gianpaolo Scalia Tomba & Jacco Wallinga & Janneke Heijne & Malgorzata Sa, 2008. "Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 5(3), pages 1-1, March.
    4. Mirjam Kretzschmar & Rafael T Mikolajczyk, 2009. "Contact Profiles in Eight European Countries and Implications for Modelling the Spread of Airborne Infectious Diseases," PLOS ONE, Public Library of Science, vol. 4(6), pages 1-8, June.
    5. Stephen Eubank & Hasan Guclu & V. S. Anil Kumar & Madhav V. Marathe & Aravind Srinivasan & Zoltán Toroczkai & Nan Wang, 2004. "Modelling disease outbreaks in realistic urban social networks," Nature, Nature, vol. 429(6988), pages 180-184, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiwen Yu & Jiming Liu & Xianjun Zhu, 2015. "Inferring a District-Based Hierarchical Structure of Social Contacts from Census Data," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-22, February.
    2. Mart L Stein & Jim E van Steenbergen & Charnchudhi Chanyasanha & Mathuros Tipayamongkholgul & Vincent Buskens & Peter G M van der Heijden & Wasamon Sabaiwan & Linus Bengtsson & Xin Lu & Anna E Thorson, 2014. "Online Respondent-Driven Sampling for Studying Contact Patterns Relevant for the Spread of Close-Contact Pathogens: A Pilot Study in Thailand," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang-chih Fu & Da-Wei Wang & Jen-Hsiang Chuang, 2012. "Representative Contact Diaries for Modeling the Spread of Infectious Diseases in Taiwan," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-7, October.
    2. Fabrizio Iozzi & Francesco Trusiano & Matteo Chinazzi & Francesco C Billari & Emilio Zagheni & Stefano Merler & Marco Ajelli & Emanuele Del Fava & Piero Manfredi, 2010. "Little Italy: An Agent-Based Approach to the Estimation of Contact Patterns- Fitting Predicted Matrices to Serological Data," PLOS Computational Biology, Public Library of Science, vol. 6(12), pages 1-10, December.
    3. Bisin, Alberto & Moro, Andrea, 2022. "Spatial‐SIR with network structure and behavior: Lockdown rules and the Lucas critique," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 370-388.
    4. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    5. Stefano Guarino & Enrico Mastrostefano & Massimo Bernaschi & Alessandro Celestini & Marco Cianfriglia & Davide Torre & Lena Rebecca Zastrow, 2021. "Inferring Urban Social Networks from Publicly Available Data," Future Internet, MDPI, vol. 13(5), pages 1-45, April.
    6. Alberto Bisin & Andrea Moro, 2020. "Learning Epidemiology by Doing: The Empirical Implications of a Spatial-SIR Model with Behavioral Responses," NBER Working Papers 27590, National Bureau of Economic Research, Inc.
    7. Laura Ozella & Francesco Gesualdo & Michele Tizzoni & Caterina Rizzo & Elisabetta Pandolfi & Ilaria Campagna & Alberto Eugenio Tozzi & Ciro Cattuto, 2018. "Close encounters between infants and household members measured through wearable proximity sensors," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-16, June.
    8. Bisin, Alberto & Moro, Andrea, 2022. "JUE insight: Learning epidemiology by doing: The empirical implications of a Spatial-SIR model with behavioral responses," Journal of Urban Economics, Elsevier, vol. 127(C).
    9. Wenting Yang & Jiantong Zhang & Ruolin Ma, 2020. "The Prediction of Infectious Diseases: A Bibliometric Analysis," IJERPH, MDPI, vol. 17(17), pages 1-19, August.
    10. Alexander R. Karimov & Michael A. Solomatin & Alexey N. Bocharov, 2024. "Influence of Transfer Epidemiological Processes on the Formation of Endemic Equilibria in the Extended SEIS Model," Mathematics, MDPI, vol. 12(22), pages 1-18, November.
    11. Carlos G Grijalva & Nele Goeyvaerts & Hector Verastegui & Kathryn M Edwards & Ana I Gil & Claudio F Lanata & Niel Hens & for the RESPIRA PERU project, 2015. "A Household-Based Study of Contact Networks Relevant for the Spread of Infectious Diseases in the Highlands of Peru," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.
    12. Radboud J. Duintjer Tebbens & Mark A. Pallansch & Dominika A. Kalkowska & Steven G. F. Wassilak & Stephen L. Cochi & Kimberly M. Thompson, 2013. "Characterizing Poliovirus Transmission and Evolution: Insights from Modeling Experiences with Wild and Vaccine‐Related Polioviruses," Risk Analysis, John Wiley & Sons, vol. 33(4), pages 703-749, April.
    13. Gail E. Potter & Nicole Bohme Carnegie & Jonathan D. Sugimoto & Aldiouma Diallo & John C. Victor & Kathleen M. Neuzil & M. Elizabeth Halloran, 2022. "Using social contact data to improve the overall effect estimate of a cluster‐randomized influenza vaccination program in Senegal," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(1), pages 70-90, January.
    14. Sze-chuan Suen & Margaret L. Brandeau & Jeremy D. Goldhaber-Fiebert, 2018. "Optimal timing of drug sensitivity testing for patients on first-line tuberculosis treatment," Health Care Management Science, Springer, vol. 21(4), pages 632-646, December.
    15. Rachael M. Jones & Elodie Adida, 2013. "Selecting Nonpharmaceutical Interventions for Influenza," Risk Analysis, John Wiley & Sons, vol. 33(8), pages 1473-1488, August.
    16. Mart L Stein & Jim E van Steenbergen & Charnchudhi Chanyasanha & Mathuros Tipayamongkholgul & Vincent Buskens & Peter G M van der Heijden & Wasamon Sabaiwan & Linus Bengtsson & Xin Lu & Anna E Thorson, 2014. "Online Respondent-Driven Sampling for Studying Contact Patterns Relevant for the Spread of Close-Contact Pathogens: A Pilot Study in Thailand," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
    17. Hend Alrasheed & Alhanoof Althnian & Heba Kurdi & Heila Al-Mgren & Sulaiman Alharbi, 2020. "COVID-19 Spread in Saudi Arabia: Modeling, Simulation and Analysis," IJERPH, MDPI, vol. 17(21), pages 1-24, October.
    18. Ichino, Andrea & Favero, Carlo A. & Rustichini, Aldo, 2020. "Restarting the economy while saving lives under Covid-19," CEPR Discussion Papers 14664, C.E.P.R. Discussion Papers.
    19. M. Hashem Pesaran & Cynthia Fan Yang, 2022. "Matching theory and evidence on Covid‐19 using a stochastic network SIR model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1204-1229, September.
    20. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0030893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.