IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0118457.html
   My bibliography  Save this article

A Household-Based Study of Contact Networks Relevant for the Spread of Infectious Diseases in the Highlands of Peru

Author

Listed:
  • Carlos G Grijalva
  • Nele Goeyvaerts
  • Hector Verastegui
  • Kathryn M Edwards
  • Ana I Gil
  • Claudio F Lanata
  • Niel Hens
  • for the RESPIRA PERU project

Abstract

Background: Few studies have quantified social mixing in remote rural areas of developing countries, where the burden of infectious diseases is usually the highest. Understanding social mixing patterns in those settings is crucial to inform the implementation of strategies for disease prevention and control. We characterized contact and social mixing patterns in rural communities of the Peruvian highlands. Methods and Findings: This cross-sectional study was nested in a large prospective household-based study of respiratory infections conducted in the province of San Marcos, Cajamarca-Peru. Members of study households were interviewed using a structured questionnaire of social contacts (conversation or physical interaction) experienced during the last 24 hours. We identified 9015 reported contacts from 588 study household members. The median age of respondents was 17 years (interquartile range [IQR] 4–34 years). The median number of reported contacts was 12 (IQR 8–20) whereas the median number of physical (i.e. skin-to-skin) contacts was 8.5 (IQR 5–14). Study participants had contacts mostly with people of similar age, and with their offspring or parents. The number of reported contacts was mainly determined by the participants’ age, household size and occupation. School-aged children had more contacts than other age groups. Within-household reciprocity of contacts reporting declined with household size (range 70%-100%). Ninety percent of household contact networks were complete, and furthermore, household members' contacts with non-household members showed significant overlap (range 33%-86%), indicating a high degree of contact clustering. A two-level mixing epidemic model was simulated to compare within-household mixing based on observed contact networks and within-household random mixing. No differences in the size or duration of the simulated epidemics were revealed. Conclusion: This study of rural low-density communities in the highlands of Peru suggests contact patterns are highly assortative. Study findings support the use of within-household homogenous mixing assumptions for epidemic modeling in this setting.

Suggested Citation

  • Carlos G Grijalva & Nele Goeyvaerts & Hector Verastegui & Kathryn M Edwards & Ana I Gil & Claudio F Lanata & Niel Hens & for the RESPIRA PERU project, 2015. "A Household-Based Study of Contact Networks Relevant for the Spread of Infectious Diseases in the Highlands of Peru," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.
  • Handle: RePEc:plo:pone00:0118457
    DOI: 10.1371/journal.pone.0118457
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0118457
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0118457&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0118457?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nele Goeyvaerts & Niel Hens & Benson Ogunjimi & Marc Aerts & Ziv Shkedy & Pierre Van Damme & Philippe Beutels, 2010. "Estimating infectious disease parameters from data on social contacts and serological status," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(2), pages 255-277, March.
    2. Gail E. Potter & Niel Hens, 2013. "A penalized likelihood approach to estimate within-household contact networks from egocentric data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(4), pages 629-648, August.
    3. Joël Mossong & Niel Hens & Mark Jit & Philippe Beutels & Kari Auranen & Rafael Mikolajczyk & Marco Massari & Stefania Salmaso & Gianpaolo Scalia Tomba & Jacco Wallinga & Janneke Heijne & Malgorzata Sa, 2008. "Social Contacts and Mixing Patterns Relevant to the Spread of Infectious Diseases," PLOS Medicine, Public Library of Science, vol. 5(3), pages 1-1, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang-chih Fu & Da-Wei Wang & Jen-Hsiang Chuang, 2012. "Representative Contact Diaries for Modeling the Spread of Infectious Diseases in Taiwan," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-7, October.
    2. Kirsty J Bolton & James M McCaw & Kristian Forbes & Paula Nathan & Garry Robins & Philippa Pattison & Terry Nolan & Jodie McVernon, 2012. "Influence of Contact Definitions in Assessment of the Relative Importance of Social Settings in Disease Transmission Risk," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-8, February.
    3. Ichino, Andrea & Favero, Carlo A. & Rustichini, Aldo, 2020. "Restarting the economy while saving lives under Covid-19," CEPR Discussion Papers 14664, C.E.P.R. Discussion Papers.
    4. M. Hashem Pesaran & Cynthia Fan Yang, 2022. "Matching theory and evidence on Covid‐19 using a stochastic network SIR model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1204-1229, September.
    5. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    6. Houštecká, Anna & Koh, Dongya & Santaeulàlia-Llopis, Raül, 2021. "Contagion at work: Occupations, industries and human contact," Journal of Public Economics, Elsevier, vol. 200(C).
    7. Kuchler, Theresa & Russel, Dominic & Stroebel, Johannes, 2022. "JUE Insight: The geographic spread of COVID-19 correlates with the structure of social networks as measured by Facebook," Journal of Urban Economics, Elsevier, vol. 127(C).
    8. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    9. S. M. Niaz Arifin & Christoph Zimmer & Caroline Trotter & Anaïs Colombini & Fati Sidikou & F. Marc LaForce & Ted Cohen & Reza Yaesoubi, 2019. "Cost-Effectiveness of Alternative Uses of Polyvalent Meningococcal Vaccines in Niger: An Agent-Based Transmission Modeling Study," Medical Decision Making, , vol. 39(5), pages 553-567, July.
    10. Bisin, Alberto & Moro, Andrea, 2022. "Spatial‐SIR with network structure and behavior: Lockdown rules and the Lucas critique," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 370-388.
    11. Mirjam Kretzschmar & Rafael T Mikolajczyk, 2009. "Contact Profiles in Eight European Countries and Implications for Modelling the Spread of Airborne Infectious Diseases," PLOS ONE, Public Library of Science, vol. 4(6), pages 1-8, June.
    12. Andrei I. Vlad & Alexei A. Romanyukha & Tatiana E. Sannikova, 2024. "Parameter Tuning of Agent-Based Models: Metaheuristic Algorithms," Mathematics, MDPI, vol. 12(14), pages 1-21, July.
    13. Elisabetta De Cao & Alessia Melegaro & Rogier Klok & Maarten Postma, 2014. "Optimising Assessments of the Epidemiological Impact in the Netherlands of Paediatric Immunisation with 13-Valent Pneumococcal Conjugate Vaccine Using Dynamic Transmission Modelling," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-9, April.
    14. Gillis, Melissa & Urban, Ryley & Saif, Ahmed & Kamal, Noreen & Murphy, Matthew, 2021. "A simulation–optimization framework for optimizing response strategies to epidemics," Operations Research Perspectives, Elsevier, vol. 8(C).
    15. Richard Pitman & David Fisman & Gregory S. Zaric & Maarten Postma & Mirjam Kretzschmar & John Edmunds & Marc Brisson, 2012. "Dynamic Transmission Modeling," Medical Decision Making, , vol. 32(5), pages 712-721, September.
    16. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    17. Valentina Marziano & Giorgio Guzzetta & Alessia Mammone & Flavia Riccardo & Piero Poletti & Filippo Trentini & Mattia Manica & Andrea Siddu & Antonino Bella & Paola Stefanelli & Patrizio Pezzotti & Ma, 2021. "The effect of COVID-19 vaccination in Italy and perspectives for living with the virus," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    18. Fatima-Zahra Jaouimaa & Daniel Dempsey & Suzanne Van Osch & Stephen Kinsella & Kevin Burke & Jason Wyse & James Sweeney, 2021. "An age-structured SEIR model for COVID-19 incidence in Dublin, Ireland with framework for evaluating health intervention cost," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-25, December.
    19. Nikolaos P. Rachaniotis & Thomas K. Dasaklis & Filippos Fotopoulos & Platon Tinios, 2021. "A Two-Phase Stochastic Dynamic Model for COVID-19 Mid-Term Policy Recommendations in Greece: A Pathway towards Mass Vaccination," IJERPH, MDPI, vol. 18(5), pages 1-21, March.
    20. Hammoumi, Aayah & Qesmi, Redouane, 2020. "Impact assessment of containment measure against COVID-19 spread in Morocco," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0118457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.