IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0019989.html
   My bibliography  Save this article

Tumor Angiogenesis and Vascular Patterning: A Mathematical Model

Author

Listed:
  • Rui D M Travasso
  • Eugenia Corvera Poiré
  • Mario Castro
  • Juan Carlos Rodrguez-Manzaneque
  • A Hernández-Machado

Abstract

Understanding tumor induced angiogenesis is a challenging problem with important consequences for diagnosis and treatment of cancer. Recently, strong evidences suggest the dual role of endothelial cells on the migrating tips and on the proliferating body of blood vessels, in consonance with further events behind lumen formation and vascular patterning. In this paper we present a multi-scale phase-field model that combines the benefits of continuum physics description and the capability of tracking individual cells. The model allows us to discuss the role of the endothelial cells' chemotactic response and proliferation rate as key factors that tailor the neovascular network. Importantly, we also test the predictions of our theoretical model against relevant experimental approaches in mice that displayed distinctive vascular patterns. The model reproduces the in vivo patterns of newly formed vascular networks, providing quantitative and qualitative results for branch density and vessel diameter on the order of the ones measured experimentally in mouse retinas. Our results highlight the ability of mathematical models to suggest relevant hypotheses with respect to the role of different parameters in this process, hence underlining the necessary collaboration between mathematical modeling, in vivo imaging and molecular biology techniques to improve current diagnostic and therapeutic tools.

Suggested Citation

  • Rui D M Travasso & Eugenia Corvera Poiré & Mario Castro & Juan Carlos Rodrguez-Manzaneque & A Hernández-Machado, 2011. "Tumor Angiogenesis and Vascular Patterning: A Mathematical Model," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-10, May.
  • Handle: RePEc:plo:pone00:0019989
    DOI: 10.1371/journal.pone.0019989
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0019989
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0019989&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0019989?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arndt F. Siekmann & Nathan D. Lawson, 2007. "Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries," Nature, Nature, vol. 445(7129), pages 781-784, February.
    2. Mats Hellström & Li-Kun Phng & Jennifer J. Hofmann & Elisabet Wallgard & Leigh Coultas & Per Lindblom & Jackelyn Alva & Ann-Katrin Nilsson & Linda Karlsson & Nicholas Gaiano & Keejung Yoon & Janet Ros, 2007. "Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis," Nature, Nature, vol. 445(7129), pages 776-780, February.
    3. Peter Carmeliet, 2005. "Angiogenesis in life, disease and medicine," Nature, Nature, vol. 438(7070), pages 932-936, December.
    4. Napoleone Ferrara & Robert S. Kerbel, 2005. "Angiogenesis as a therapeutic target," Nature, Nature, vol. 438(7070), pages 967-974, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehmet Can Uçar & Dmitrii Kamenev & Kazunori Sunadome & Dominik Fachet & Francois Lallemend & Igor Adameyko & Saida Hadjab & Edouard Hannezo, 2021. "Theory of branching morphogenesis by local interactions and global guidance," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rocío Vega & Manuel Carretero & Rui D M Travasso & Luis L Bonilla, 2020. "Notch signaling and taxis mechanisms regulate early stage angiogenesis: A mathematical and computational model," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-31, January.
    2. Hanlin Lu & Peidong Yuan & Xiaoping Ma & Xiuxin Jiang & Shaozhuang Liu & Chang Ma & Sjaak Philipsen & Qunye Zhang & Jianmin Yang & Feng Xu & Cheng Zhang & Yun Zhang & Wencheng Zhang, 2023. "Angiotensin-converting enzyme inhibitor promotes angiogenesis through Sp1/Sp3-mediated inhibition of notch signaling in male mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Atsuya Yaguchi & Mio Oshikawa & Go Watanabe & Hirotsugu Hiramatsu & Noriyuki Uchida & Chikako Hara & Naoko Kaneko & Kazunobu Sawamoto & Takahiro Muraoka & Itsuki Ajioka, 2021. "Efficient protein incorporation and release by a jigsaw-shaped self-assembling peptide hydrogel for injured brain regeneration," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Eun-A Kwak & Christopher C. Pan & Aaron Ramonett & Sanjay Kumar & Paola Cruz-Flores & Tasmia Ahmed & Hannah R. Ortiz & Jeffrey J. Lochhead & Nathan A. Ellis & Ghassan Mouneimne & Teodora G. Georgieva , 2022. "βIV-spectrin as a stalk cell-intrinsic regulator of VEGF signaling," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Moritz Gerstung & Hani Nakhoul & Niko Beerenwinkel, 2011. "Evolutionary Games with Affine Fitness Functions: Applications to Cancer," Dynamic Games and Applications, Springer, vol. 1(3), pages 370-385, September.
    6. Yassine El Bakkouri & Rony Chidiac & Chantal Delisle & Jeanne Corriveau & Gael Cagnone & Vanda Gaonac’h-Lovejoy & Ashley Chin & Éric Lécuyer & Stephane Angers & Jean-Sébastien Joyal & Ivan Topisirovic, 2024. "ZO-1 interacts with YB-1 in endothelial cells to regulate stress granule formation during angiogenesis," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    7. Xia Han & Huiqin Qi & Wenting Liu & Menghai Wu, 2020. "Effect of Sacubitril/Valsartan on VEGF, VEGFR-1 and Left Ventricular Remodeling in Patients with Heart Failure with Decreased Ejection Fraction Effect of Sacubitril/Valsartan on VEGF, VEGFR-1 and Left," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 25(3), pages 19154-19160, January.
    8. Yuping Li & Mengzhuo Hou & Guangyu Lu & Natalia Ciccone & Xingdong Wang & Hengzhu Zhang, 2016. "The Prognosis of Anti-Angiogenesis Treatments Combined with Standard Therapy for Newly Diagnosed Glioblastoma: A Meta-Analysis of Randomized Controlled Trials," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-16, December.
    9. Dragica Dobrovic & Damir Pelicic & Mitar Saveljic & Dragica Dobrovic & Damir Pelicic & Mitar Saveljic, 2020. "Risk Factors for Postoperative Delirium After Cardiac Surgery at the Clinical Center of Montenegro," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 32(1), pages 24731-24735, November.
    10. Laetitia Préau & Anna Lischke & Melanie Merkel & Neslihan Oegel & Maria Weissenbruch & Andria Michael & Hongryeol Park & Dietmar Gradl & Christian Kupatt & Ferdinand Noble, 2024. "Parenchymal cues define Vegfa-driven venous angiogenesis by activating a sprouting competent venous endothelial subtype," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    11. Fuchun Yang & Shiva Kalantari & Banzhan Ruan & Shaogang Sun & Zhaoqun Bian & Jun-Lin Guan, 2023. "Autophagy inhibition prevents lymphatic malformation progression to lymphangiosarcoma by decreasing osteopontin and Stat3 signaling," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    12. Haifeng Zhang & Busu Li & Qunhua Huang & Francesc López-Giráldez & Yoshiaki Tanaka & Qun Lin & Sameet Mehta & Guilin Wang & Morven Graham & Xinran Liu & In-Hyun Park & Anne Eichmann & Wang Min & Jenny, 2022. "Mitochondrial dysfunction induces ALK5-SMAD2-mediated hypovascularization and arteriovenous malformations in mouse retinas," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    13. S. Kaessmeyer & H. Huenigen & S. Al Masri & P. Dieckhoefer & K. Richardson & J. Plendl, 2016. "Corpus luteal angiogenesis in a high milk production dairy breed differs from that of cattle with lower milk production levels," Veterinární medicína, Czech Academy of Agricultural Sciences, vol. 61(9), pages 497-503.
    14. Zélia Velez & Marco A. Campinho & Ângela R. Guerra & Laura García & Patricia Ramos & Olinda Guerreiro & Laura Felício & Fernando Schmitt & Maria Duarte, 2012. "Biological Characterization of Cynara cardunculus L. Methanolic Extracts: Antioxidant, Anti-proliferative, Anti-migratory and Anti-angiogenic Activities," Agriculture, MDPI, vol. 2(4), pages 1-21, December.
    15. Sadhukhan, Sounak & Mishra, P.K., 2022. "The notion of fractals in tumour angiogenic sprout initiation model based on cellular automata," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0019989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.