IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26896-3.html
   My bibliography  Save this article

Efficient protein incorporation and release by a jigsaw-shaped self-assembling peptide hydrogel for injured brain regeneration

Author

Listed:
  • Atsuya Yaguchi

    (Tokyo University of Agriculture and Technology)

  • Mio Oshikawa

    (Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU)
    Kanagawa Institute of Industrial Science and Technology (KISTEC))

  • Go Watanabe

    (Kanagawa Institute of Industrial Science and Technology (KISTEC)
    Kitasato University)

  • Hirotsugu Hiramatsu

    (National Yang Ming Chiao Tung University
    Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University)

  • Noriyuki Uchida

    (Tokyo University of Agriculture and Technology)

  • Chikako Hara

    (Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU)
    Kanagawa Institute of Industrial Science and Technology (KISTEC))

  • Naoko Kaneko

    (Nagoya City University Graduate School of Medical Sciences)

  • Kazunobu Sawamoto

    (Nagoya City University Graduate School of Medical Sciences
    National Institute for Physiological Sciences)

  • Takahiro Muraoka

    (Tokyo University of Agriculture and Technology
    Kanagawa Institute of Industrial Science and Technology (KISTEC))

  • Itsuki Ajioka

    (Center for Brain Integration Research (CBIR), Tokyo Medical and Dental University (TMDU)
    Kanagawa Institute of Industrial Science and Technology (KISTEC))

Abstract

During injured tissue regeneration, the extracellular matrix plays a key role in controlling and coordinating various cellular events by binding and releasing secreted proteins in addition to promoting cell adhesion. Herein, we develop a cell-adhesive fiber-forming peptide that mimics the jigsaw-shaped hydrophobic surface in the dovetail-packing motif of glycophorin A as an artificial extracellular matrix for regenerative therapy. We show that the jigsaw-shaped self-assembling peptide forms several-micrometer-long supramolecular nanofibers through a helix-to-strand transition to afford a hydrogel under physiological conditions and disperses homogeneously in the hydrogel. The molecular- and macro-scale supramolecular properties of the jigsaw-shaped self-assembling peptide hydrogel allow efficient incorporation and sustained release of vascular endothelial growth factor, and demonstrate cell transplantation-free regenerative therapeutic effects in a subacute-chronic phase mouse stroke model. This research highlights a therapeutic strategy for injured tissue regeneration using the jigsaw-shaped self-assembling peptide supramolecular hydrogel.

Suggested Citation

  • Atsuya Yaguchi & Mio Oshikawa & Go Watanabe & Hirotsugu Hiramatsu & Noriyuki Uchida & Chikako Hara & Naoko Kaneko & Kazunobu Sawamoto & Takahiro Muraoka & Itsuki Ajioka, 2021. "Efficient protein incorporation and release by a jigsaw-shaped self-assembling peptide hydrogel for injured brain regeneration," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26896-3
    DOI: 10.1038/s41467-021-26896-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26896-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26896-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter Carmeliet, 2005. "Angiogenesis in life, disease and medicine," Nature, Nature, vol. 438(7070), pages 932-936, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rocío Vega & Manuel Carretero & Rui D M Travasso & Luis L Bonilla, 2020. "Notch signaling and taxis mechanisms regulate early stage angiogenesis: A mathematical and computational model," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-31, January.
    2. Moritz Gerstung & Hani Nakhoul & Niko Beerenwinkel, 2011. "Evolutionary Games with Affine Fitness Functions: Applications to Cancer," Dynamic Games and Applications, Springer, vol. 1(3), pages 370-385, September.
    3. Yuping Li & Mengzhuo Hou & Guangyu Lu & Natalia Ciccone & Xingdong Wang & Hengzhu Zhang, 2016. "The Prognosis of Anti-Angiogenesis Treatments Combined with Standard Therapy for Newly Diagnosed Glioblastoma: A Meta-Analysis of Randomized Controlled Trials," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-16, December.
    4. Hanlin Lu & Peidong Yuan & Xiaoping Ma & Xiuxin Jiang & Shaozhuang Liu & Chang Ma & Sjaak Philipsen & Qunye Zhang & Jianmin Yang & Feng Xu & Cheng Zhang & Yun Zhang & Wencheng Zhang, 2023. "Angiotensin-converting enzyme inhibitor promotes angiogenesis through Sp1/Sp3-mediated inhibition of notch signaling in male mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    5. Rui D M Travasso & Eugenia Corvera Poiré & Mario Castro & Juan Carlos Rodrguez-Manzaneque & A Hernández-Machado, 2011. "Tumor Angiogenesis and Vascular Patterning: A Mathematical Model," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-10, May.
    6. S. Kaessmeyer & H. Huenigen & S. Al Masri & P. Dieckhoefer & K. Richardson & J. Plendl, 2016. "Corpus luteal angiogenesis in a high milk production dairy breed differs from that of cattle with lower milk production levels," Veterinární medicína, Czech Academy of Agricultural Sciences, vol. 61(9), pages 497-503.
    7. Zélia Velez & Marco A. Campinho & Ângela R. Guerra & Laura García & Patricia Ramos & Olinda Guerreiro & Laura Felício & Fernando Schmitt & Maria Duarte, 2012. "Biological Characterization of Cynara cardunculus L. Methanolic Extracts: Antioxidant, Anti-proliferative, Anti-migratory and Anti-angiogenic Activities," Agriculture, MDPI, vol. 2(4), pages 1-21, December.
    8. Sadhukhan, Sounak & Mishra, P.K., 2022. "The notion of fractals in tumour angiogenic sprout initiation model based on cellular automata," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26896-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.