IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1000163.html
   My bibliography  Save this article

Contact-Inhibited Chemotaxis in De Novo and Sprouting Blood-Vessel Growth

Author

Listed:
  • Roeland M H Merks
  • Erica D Perryn
  • Abbas Shirinifard
  • James A Glazier

Abstract

Blood vessels form either when dispersed endothelial cells (the cells lining the inner walls of fully formed blood vessels) organize into a vessel network (vasculogenesis), or by sprouting or splitting of existing blood vessels (angiogenesis). Although they are closely related biologically, no current model explains both phenomena with a single biophysical mechanism. Most computational models describe sprouting at the level of the blood vessel, ignoring how cell behavior drives branch splitting during sprouting. We present a cell-based, Glazier–Graner–Hogeweg model (also called Cellular Potts Model) simulation of the initial patterning before the vascular cords form lumens, based on plausible behaviors of endothelial cells. The endothelial cells secrete a chemoattractant, which attracts other endothelial cells. As in the classic Keller–Segel model, chemotaxis by itself causes cells to aggregate into isolated clusters. However, including experimentally observed VE-cadherin–mediated contact inhibition of chemotaxis in the simulation causes randomly distributed cells to organize into networks and cell aggregates to sprout, reproducing aspects of both de novo and sprouting blood-vessel growth. We discuss two branching instabilities responsible for our results. Cells at the surfaces of cell clusters attempting to migrate to the centers of the clusters produce a buckling instability. In a model variant that eliminates the surface–normal force, a dissipative mechanism drives sprouting, with the secreted chemical acting both as a chemoattractant and as an inhibitor of pseudopod extension. Both mechanisms would also apply if force transmission through the extracellular matrix rather than chemical signaling mediated cell–cell interactions. The branching instabilities responsible for our results, which result from contact inhibition of chemotaxis, are both generic developmental mechanisms and interesting examples of unusual patterning instabilities.Author Summary: A better understanding of the mechanisms by which endothelial cells (the cells lining the inner walls of blood vessels) organize into blood vessels is crucial if we need to enhance or suppress blood vessel growth under pathological conditions, including diabetes, wound healing, and tumor growth. During embryonic development, endothelial cells initially self-organize into a network of solid cords via blood vessel growth. The vascular network expands by splitting of existing blood vessels and by sprouting. Using computer simulations, we have captured a small set of biologically plausible cell behaviors that can reproduce the initial self-organization of endothelial cells, the sprouting of existing vessels, and the immediately subsequent remodeling of the resulting networks. In this model, endothelial cells both secrete diffusible chemoattractants and move up gradients of those chemicals by extending and retracting small pseudopods. By itself, this behavior causes simulated cells to accumulate to aggregate into large, round clusters. We propose that endothelial cells stop extending pseudopods along a given section of cell membrane as soon as the membrane touches the membrane of another endothelial cell (contact inhibition). Adding such contact-inhibition to our simulations allows vascular cords to form sprouts under a wide range of conditions.

Suggested Citation

  • Roeland M H Merks & Erica D Perryn & Abbas Shirinifard & James A Glazier, 2008. "Contact-Inhibited Chemotaxis in De Novo and Sprouting Blood-Vessel Growth," PLOS Computational Biology, Public Library of Science, vol. 4(9), pages 1-16, September.
  • Handle: RePEc:plo:pcbi00:1000163
    DOI: 10.1371/journal.pcbi.1000163
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000163
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1000163&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1000163?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter Carmeliet & Rakesh K. Jain, 2000. "Angiogenesis in cancer and other diseases," Nature, Nature, vol. 407(6801), pages 249-257, September.
    2. Mats Hellström & Li-Kun Phng & Jennifer J. Hofmann & Elisabet Wallgard & Leigh Coultas & Per Lindblom & Jackelyn Alva & Ann-Katrin Nilsson & Linda Karlsson & Nicholas Gaiano & Keejung Yoon & Janet Ros, 2007. "Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis," Nature, Nature, vol. 445(7129), pages 776-780, February.
    3. Leigh Coultas & Kallayanee Chawengsaksophak & Janet Rossant, 2005. "Endothelial cells and VEGF in vascular development," Nature, Nature, vol. 438(7070), pages 937-945, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Hoffmann & Jens-Peer Kuska & Matthias Zscharnack & Markus Loeffler & Joerg Galle, 2011. "Spatial Organization of Mesenchymal Stem Cells In Vitro—Results from a New Individual Cell-Based Model with Podia," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rocío Vega & Manuel Carretero & Rui D M Travasso & Luis L Bonilla, 2020. "Notch signaling and taxis mechanisms regulate early stage angiogenesis: A mathematical and computational model," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-31, January.
    2. Fuchun Yang & Shiva Kalantari & Banzhan Ruan & Shaogang Sun & Zhaoqun Bian & Jun-Lin Guan, 2023. "Autophagy inhibition prevents lymphatic malformation progression to lymphangiosarcoma by decreasing osteopontin and Stat3 signaling," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Bin Wu & Haixiang Wu & Xiaoyan Liu & Houwen Lin & Jin Li, 2014. "Ranibizumab versus Bevacizumab for Ophthalmic Diseases Related to Neovascularisation: A Meta-Analysis of Randomised Controlled Trials," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-8, July.
    4. Lars Tore Gyland Mikalsen & Hari Prasad Dhakal & Øyvind S Bruland & Bjørn Naume & Elin Borgen & Jahn M Nesland & Dag Rune Olsen, 2013. "The Clinical Impact of Mean Vessel Size and Solidity in Breast Carcinoma Patients," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-11, October.
    5. Eun-A Kwak & Christopher C. Pan & Aaron Ramonett & Sanjay Kumar & Paola Cruz-Flores & Tasmia Ahmed & Hannah R. Ortiz & Jeffrey J. Lochhead & Nathan A. Ellis & Ghassan Mouneimne & Teodora G. Georgieva , 2022. "βIV-spectrin as a stalk cell-intrinsic regulator of VEGF signaling," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Annemarie Klatt & Jannis O. Wollschlaeger & Franziska B. Albrecht & Sara Rühle & Lena B. Holzwarth & Holger Hrenn & Tanja Melzer & Simon Heine & Petra J. Kluger, 2024. "Dynamically cultured, differentiated bovine adipose-derived stem cell spheroids as building blocks for biofabricating cultured fat," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Ze-Feng Zhang & Tao Wang & Li-Hua Liu & Hui-Qin Guo, 2014. "Risks of Proteinuria Associated with Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitors in Cancer Patients: A Systematic Review and Meta-Analysis," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-10, March.
    8. Yassine El Bakkouri & Rony Chidiac & Chantal Delisle & Jeanne Corriveau & Gael Cagnone & Vanda Gaonac’h-Lovejoy & Ashley Chin & Éric Lécuyer & Stephane Angers & Jean-Sébastien Joyal & Ivan Topisirovic, 2024. "ZO-1 interacts with YB-1 in endothelial cells to regulate stress granule formation during angiogenesis," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    9. Yi Sun & Yao Wang & Shu Yuan & Jialing Wen & Weiyu Li & Liu Yang & Xiaoyan Huang & Yanmei Mo & Yingqi Zhao & Yuanming Lu, 2018. "Exposure to PM2.5 via vascular endothelial growth factor relationship: Meta-analysis," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-12, June.
    10. Wenhua Liang & Xuan Wu & Shaodong Hong & Yaxiong Zhang & Shiyang Kang & Wenfeng Fang & Tao Qin & Yan Huang & Hongyun Zhao & Li Zhang, 2014. "Multi-Targeted Antiangiogenic Tyrosine Kinase Inhibitors in Advanced Non-Small Cell Lung Cancer: Meta-Analyses of 20 Randomized Controlled Trials and Subgroup Analyses," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-7, October.
    11. Hailong He & Christine Schönmann & Mathias Schwarz & Benedikt Hindelang & Andrei Berezhnoi & Susanne Annette Steimle-Grauer & Ulf Darsow & Juan Aguirre & Vasilis Ntziachristos, 2022. "Fast raster-scan optoacoustic mesoscopy enables assessment of human melanoma microvasculature in vivo," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Kimio Takeuchi & Ryoji Yanai & Fumiaki Kumase & Yuki Morizane & Jun Suzuki & Maki Kayama & Katarzyna Brodowska & Mitsuru Nakazawa & Joan W Miller & Kip M Connor & Demetrios G Vavvas, 2014. "EGF-Like-Domain-7 Is Required for VEGF-Induced Akt/ERK Activation and Vascular Tube Formation in an Ex Vivo Angiogenesis Assay," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-7, March.
    13. Klaus Eickel & David Andrew Porter & Anika Söhner & Marc Maaß & Lutz Lüdemann & Matthias Günther, 2018. "Simultaneous multislice acquisition with multi-contrast segmented EPI for separation of signal contributions in dynamic contrast-enhanced imaging," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-22, August.
    14. Rui D M Travasso & Eugenia Corvera Poiré & Mario Castro & Juan Carlos Rodrguez-Manzaneque & A Hernández-Machado, 2011. "Tumor Angiogenesis and Vascular Patterning: A Mathematical Model," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-10, May.
    15. Marc E Seaman & Shayn M Peirce & Kimberly Kelly, 2011. "Rapid Analysis of Vessel Elements (RAVE): A Tool for Studying Physiologic, Pathologic and Tumor Angiogenesis," PLOS ONE, Public Library of Science, vol. 6(6), pages 1-8, June.
    16. Harman Ghuman & Kyungsoo Kim & Sapeeda Barati & Karunesh Ganguly, 2023. "Emergence of task-related spatiotemporal population dynamics in transplanted neurons," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Sara G. Romeo & Ilaria Secco & Edoardo Schneider & Christina M. Reumiller & Celio X. C. Santos & Anna Zoccarato & Vishal Musale & Aman Pooni & Xiaoke Yin & Konstantinos Theofilatos & Silvia Cellone Tr, 2023. "Human blood vessel organoids reveal a critical role for CTGF in maintaining microvascular integrity," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    18. Niina M. Santio & Keerthana Ganesh & Pihla P. Kaipainen & Aleksi Halme & Fatemeh Seyednasrollah & Emad Arbash & Satu Hänninen & Riikka Kivelä & Olli Carpen & Pipsa Saharinen, 2024. "Endothelial Pim3 kinase protects the vascular barrier during lung metastasis," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    19. Sadhukhan, Sounak & Mishra, P.K., 2022. "The notion of fractals in tumour angiogenic sprout initiation model based on cellular automata," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    20. Sun Young Lee & Farhan Haq & Deokhoon Kim & Cui Jun & Hui-Jong Jo & Sung-Min Ahn & Won-Suk Lee, 2014. "Comparative Genomic Analysis of Primary and Synchronous Metastatic Colorectal Cancers," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-9, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1000163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.