IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48852-7.html
   My bibliography  Save this article

ZO-1 interacts with YB-1 in endothelial cells to regulate stress granule formation during angiogenesis

Author

Listed:
  • Yassine El Bakkouri

    (Université de Montréal)

  • Rony Chidiac

    (Université de Montréal
    University of Toronto)

  • Chantal Delisle

    (Université de Montréal)

  • Jeanne Corriveau

    (Université de Montréal)

  • Gael Cagnone

    (Centre Hospitalier Universitaire Sainte-Justine Research Center)

  • Vanda Gaonac’h-Lovejoy

    (Université de Montréal)

  • Ashley Chin

    (Institut de recherches cliniques de Montréal (IRCM))

  • Éric Lécuyer

    (Institut de recherches cliniques de Montréal (IRCM)
    Université de Montréal)

  • Stephane Angers

    (University of Toronto)

  • Jean-Sébastien Joyal

    (Centre Hospitalier Universitaire Sainte-Justine Research Center
    Université de Montréal)

  • Ivan Topisirovic

    (McGill University)

  • Laura Hulea

    (Université de Montréal
    Université de Montréal)

  • Alexandre Dubrac

    (Centre Hospitalier Universitaire Sainte-Justine Research Center
    Université de Montréal)

  • Jean-Philippe Gratton

    (Université de Montréal
    Université de Montréal)

Abstract

Zonula occludens-1 (ZO-1) is involved in the regulation of cell-cell junctions between endothelial cells (ECs). Here we identify the ZO-1 protein interactome and uncover ZO-1 interactions with RNA-binding proteins that are part of stress granules (SGs). Downregulation of ZO-1 increased SG formation in response to stress and protected ECs from cellular insults. The ZO-1 interactome uncovered an association between ZO-1 and Y-box binding protein 1 (YB-1), a constituent of SGs. Arsenite treatment of ECs decreased the interaction between ZO-1 and YB-1, and drove SG assembly. YB-1 expression is essential for SG formation and for the cytoprotective effects induced by ZO-1 downregulation. In the developing retinal vascular plexus of newborn mice, ECs at the front of growing vessels express less ZO-1 but display more YB-1-positive granules than ECs located in the vascular plexus. Endothelial-specific deletion of ZO-1 in mice at post-natal day 7 markedly increased the presence of YB-1-positive granules in ECs of retinal blood vessels, altered tip EC morphology and vascular patterning, resulting in aberrant endothelial proliferation, and arrest in the expansion of the retinal vasculature. Our findings suggest that, through its interaction with YB-1, ZO-1 controls SG formation and the response of ECs to stress during angiogenesis.

Suggested Citation

  • Yassine El Bakkouri & Rony Chidiac & Chantal Delisle & Jeanne Corriveau & Gael Cagnone & Vanda Gaonac’h-Lovejoy & Ashley Chin & Éric Lécuyer & Stephane Angers & Jean-Sébastien Joyal & Ivan Topisirovic, 2024. "ZO-1 interacts with YB-1 in endothelial cells to regulate stress granule formation during angiogenesis," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48852-7
    DOI: 10.1038/s41467-024-48852-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48852-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48852-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carlos Carmona-Fontaine & Helen K. Matthews & Sei Kuriyama & Mauricio Moreno & Graham A. Dunn & Maddy Parsons & Claudio D. Stern & Roberto Mayor, 2008. "Contact inhibition of locomotion in vivo controls neural crest directional migration," Nature, Nature, vol. 456(7224), pages 957-961, December.
    2. Enrique Zudaire & Laure Gambardella & Christopher Kurcz & Sonja Vermeren, 2011. "A Computational Tool for Quantitative Analysis of Vascular Networks," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-12, November.
    3. Mats Hellström & Li-Kun Phng & Jennifer J. Hofmann & Elisabet Wallgard & Leigh Coultas & Per Lindblom & Jackelyn Alva & Ann-Katrin Nilsson & Linda Karlsson & Nicholas Gaiano & Keejung Yoon & Janet Ros, 2007. "Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis," Nature, Nature, vol. 445(7129), pages 776-780, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. András Szabó & Eric Theveneau & Melissa Turan & Roberto Mayor, 2019. "Neural crest streaming as an emergent property of tissue interactions during morphogenesis," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-21, April.
    2. Rocío Vega & Manuel Carretero & Rui D M Travasso & Luis L Bonilla, 2020. "Notch signaling and taxis mechanisms regulate early stage angiogenesis: A mathematical and computational model," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-31, January.
    3. Antonio Citro & Alessia Neroni & Cataldo Pignatelli & Francesco Campo & Martina Policardi & Matteo Monieri & Silvia Pellegrini & Erica Dugnani & Fabio Manenti & Maria Chiara Maffia & Libera Valla & El, 2023. "Directed self-assembly of a xenogeneic vascularized endocrine pancreas for type 1 diabetes," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    4. Eun-A Kwak & Christopher C. Pan & Aaron Ramonett & Sanjay Kumar & Paola Cruz-Flores & Tasmia Ahmed & Hannah R. Ortiz & Jeffrey J. Lochhead & Nathan A. Ellis & Ghassan Mouneimne & Teodora G. Georgieva , 2022. "βIV-spectrin as a stalk cell-intrinsic regulator of VEGF signaling," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Aidan Anderson & Nada Alfahad & Dulani Wimalachandra & Kaouthar Bouzinab & Paula Rudzinska & Heather Wood & Isabel Fazey & Heping Xu & Timothy J. Lyons & Nicholas M. Barnes & Parth Narendran & Janet M, 2024. "Relaxation of mitochondrial hyperfusion in the diabetic retina via N6-furfuryladenosine confers neuroprotection regardless of glycaemic status," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Masataka Yamao & Honda Naoki & Shin Ishii, 2011. "Multi-Cellular Logistics of Collective Cell Migration," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-11, December.
    7. Sandra Schrenk & Lindsay J. Bischoff & Jillian Goines & Yuqi Cai & Shruti Vemaraju & Yoshinobu Odaka & Samantha R. Good & Joseph S. Palumbo & Sara Szabo & Damien Reynaud & Catherine D. Raamsdonk & Ric, 2023. "MEK inhibition reduced vascular tumor growth and coagulopathy in a mouse model with hyperactive GNAQ," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    8. Teena Bhakuni & Pieter R. Norden & Naoto Ujiie & Can Tan & Sun Kyong Lee & Thomas Tedeschi & Yi-Wen Hsieh & Ying Wang & Ting Liu & Amani A. Fawzi & Tsutomu Kume, 2024. "FOXC1 regulates endothelial CD98 (LAT1/4F2hc) expression in retinal angiogenesis and blood-retina barrier formation," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    9. Agustin D. Pizarro & Claudio L. A. Berli & Galo J. A. A. Soler-Illia & Martín G. Bellino, 2022. "Droplets in underlying chemical communication recreate cell interaction behaviors," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Aleksandr Vasilyev & Yan Liu & Nathan Hellman & Narendra Pathak & Iain A Drummond, 2012. "Mechanical Stretch and PI3K Signaling Link Cell Migration and Proliferation to Coordinate Epithelial Tubule Morphogenesis in the Zebrafish Pronephros," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-11, July.
    11. Nunzia Caporarello & Jisu Lee & Tho X. Pham & Dakota L. Jones & Jiazhen Guan & Patrick A. Link & Jeffrey A. Meridew & Grace Marden & Takashi Yamashita & Collin A. Osborne & Aditya V. Bhagwate & Steven, 2022. "Dysfunctional ERG signaling drives pulmonary vascular aging and persistent fibrosis," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    12. Matthew A. Heinrich & Ricard Alert & Abraham E. Wolf & Andrej Košmrlj & Daniel J. Cohen, 2022. "Self-assembly of tessellated tissue sheets by expansion and collision," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    13. Fuchun Yang & Shiva Kalantari & Banzhan Ruan & Shaogang Sun & Zhaoqun Bian & Jun-Lin Guan, 2023. "Autophagy inhibition prevents lymphatic malformation progression to lymphangiosarcoma by decreasing osteopontin and Stat3 signaling," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. M. Gabriele Bixel & Kishor K. Sivaraj & Melanie Timmen & Vishal Mohanakrishnan & Anusha Aravamudhan & Susanne Adams & Bong-Ihn Koh & Hyun-Woo Jeong & Kai Kruse & Richard Stange & Ralf H. Adams, 2024. "Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
    15. Christine Chiasson-MacKenzie & Jeremie Vitte & Ching-Hui Liu & Emily A. Wright & Elizabeth A. Flynn & Shannon L. Stott & Marco Giovannini & Andrea I. McClatchey, 2023. "Cellular mechanisms of heterogeneity in NF2-mutant schwannoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Rui D M Travasso & Eugenia Corvera Poiré & Mario Castro & Juan Carlos Rodrguez-Manzaneque & A Hernández-Machado, 2011. "Tumor Angiogenesis and Vascular Patterning: A Mathematical Model," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-10, May.
    17. Jiyeon Lee & Haeryung Lee & Hyein Lee & Miram Shin & Min-Gi Shin & Jinsoo Seo & Eun Jeong Lee & Sun Ah Park & Soochul Park, 2023. "ANKS1A regulates LDL receptor-related protein 1 (LRP1)-mediated cerebrovascular clearance in brain endothelial cells," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48852-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.