IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0053432.html
   My bibliography  Save this article

A Bayesian Approach for Modeling Cattle Movements in the United States: Scaling up a Partially Observed Network

Author

Listed:
  • Tom Lindström
  • Daniel A Grear
  • Michael Buhnerkempe
  • Colleen T Webb
  • Ryan S Miller
  • Katie Portacci
  • Uno Wennergren

Abstract

Networks are rarely completely observed and prediction of unobserved edges is an important problem, especially in disease spread modeling where networks are used to represent the pattern of contacts. We focus on a partially observed cattle movement network in the U.S. and present a method for scaling up to a full network based on Bayesian inference, with the aim of informing epidemic disease spread models in the United States. The observed network is a 10% state stratified sample of Interstate Certificates of Veterinary Inspection that are required for interstate movement; describing approximately 20,000 movements from 47 of the contiguous states, with origins and destinations aggregated at the county level. We address how to scale up the 10% sample and predict unobserved intrastate movements based on observed movement distances. Edge prediction based on a distance kernel is not straightforward because the probability of movement does not always decline monotonically with distance due to underlying industry infrastructure. Hence, we propose a spatially explicit model where the probability of movement depends on distance, number of premises per county and historical imports of animals. Our model performs well in recapturing overall metrics of the observed network at the node level (U.S. counties), including degree centrality and betweenness; and performs better compared to randomized networks. Kernel generated movement networks also recapture observed global network metrics, including network size, transitivity, reciprocity, and assortativity better than randomized networks. In addition, predicted movements are similar to observed when aggregated at the state level (a broader geographic level relevant for policy) and are concentrated around states where key infrastructures, such as feedlots, are common. We conclude that the method generally performs well in predicting both coarse geographical patterns and network structure and is a promising method to generate full networks that incorporate the uncertainty of sampled and unobserved contacts.

Suggested Citation

  • Tom Lindström & Daniel A Grear & Michael Buhnerkempe & Colleen T Webb & Ryan S Miller & Katie Portacci & Uno Wennergren, 2013. "A Bayesian Approach for Modeling Cattle Movements in the United States: Scaling up a Partially Observed Network," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-11, January.
  • Handle: RePEc:plo:pone00:0053432
    DOI: 10.1371/journal.pone.0053432
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0053432
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0053432&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0053432?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Neil M. Ferguson & Christl A. Donnelly & Roy M. Anderson, 2001. "Transmission intensity and impact of control policies on the foot and mouth epidemic in Great Britain," Nature, Nature, vol. 413(6855), pages 542-548, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaoyue Xi & Simon E. F. Spencer & Matthew Hall & M. Kate Grabowski & Joseph Kagaayi & Oliver Ratmann & Rakai Health Sciences Program and PANGEA‐HIV, 2022. "Inferring the sources of HIV infection in Africa from deep‐sequence data with semi‐parametric Bayesian Poisson flow models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 517-540, June.
    2. Malin Tälle & Lotten Wiréhn & Daniel Ellström & Mattias Hjerpe & Maria Huge-Brodin & Per Jensen & Tom Lindström & Tina-Simone Neset & Uno Wennergren & Geneviève Metson, 2019. "Synergies and Trade-Offs for Sustainable Food Production in Sweden: An Integrated Approach," Sustainability, MDPI, vol. 11(3), pages 1-22, January.
    3. Peter Brommesson & Uno Wennergren & Tom Lindström, 2016. "Spatiotemporal Variation in Distance Dependent Animal Movement Contacts: One Size Doesn’t Fit All," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-20, October.
    4. Stefan Sellman & Kimberly Tsao & Michael J Tildesley & Peter Brommesson & Colleen T Webb & Uno Wennergren & Matt J Keeling & Tom Lindström, 2018. "Need for speed: An optimized gridding approach for spatially explicit disease simulations," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-27, April.
    5. Tom Lindström & Michael Tildesley & Colleen Webb, 2015. "A Bayesian Ensemble Approach for Epidemiological Projections," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-30, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ian E. Fellows & Mark S. Handcock, 2023. "Modeling of networked populations when data is sampled or missing," METRON, Springer;Sapienza Università di Roma, vol. 81(1), pages 21-35, April.
    2. Rob Deardon & Babak Habibzadeh & Hau Yi Chung, 2012. "Spatial measurement error in infectious disease models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(5), pages 1139-1150, November.
    3. Ioannidis, John P.A. & Cripps, Sally & Tanner, Martin A., 2022. "Forecasting for COVID-19 has failed," International Journal of Forecasting, Elsevier, vol. 38(2), pages 423-438.
    4. Don Klinkenberg & Christophe Fraser & Hans Heesterbeek, 2006. "The Effectiveness of Contact Tracing in Emerging Epidemics," PLOS ONE, Public Library of Science, vol. 1(1), pages 1-7, December.
    5. Krämer, J. & Farwick, J., 2009. "Schäden in der Landwirtschaft durch Maul- und Klauenseuche: Simulationsrechnungen für ausgewählte Modellregionen," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 44, March.
    6. Rakowski, Franciszek & Gruziel, Magdalena & Bieniasz-Krzywiec, Łukasz & Radomski, Jan P., 2010. "Influenza epidemic spread simulation for Poland — a large scale, individual based model study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3149-3165.
    7. Wenting Yang & Jiantong Zhang & Ruolin Ma, 2020. "The Prediction of Infectious Diseases: A Bibliometric Analysis," IJERPH, MDPI, vol. 17(17), pages 1-19, August.
    8. Montazeri Hesam & Little Susan & Mozaffarilegha Mozhgan & Beerenwinkel Niko & DeGruttola Victor, 2020. "Bayesian reconstruction of transmission trees from genetic sequences and uncertain infection times," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 19(4-6), pages 1-13, December.
    9. Larry Stikeleather & William Morrow & Robert Meyer & Craig Baird & Burt Halbert, 2013. "Evaluation of CO 2 Application Requirements for On-Farm Mass Depopulation of Swine in a Disease Emergency," Agriculture, MDPI, vol. 3(4), pages 1-14, September.
    10. Peter Brommesson & Uno Wennergren & Tom Lindström, 2016. "Spatiotemporal Variation in Distance Dependent Animal Movement Contacts: One Size Doesn’t Fit All," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-20, October.
    11. Thomas House & Matt J Keeling, 2010. "The Impact of Contact Tracing in Clustered Populations," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-9, March.
    12. Alzahrani, Abdullah K. & Alshomrani, Ali Saleh & Pal, Nikhil & Samanta, Sudip, 2018. "Study of an eco-epidemiological model with Z-type control," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 197-208.
    13. repec:sae:envval:v:15:y:2006:i:4:p:441-462 is not listed on IDEAS
    14. Marco J Morelli & Gaël Thébaud & Joël Chadœuf & Donald P King & Daniel T Haydon & Samuel Soubeyrand, 2012. "A Bayesian Inference Framework to Reconstruct Transmission Trees Using Epidemiological and Genetic Data," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-14, November.
    15. Yuan, Xinpeng & Xue, Yakui & Liu, Maoxing, 2013. "Analysis of an epidemic model with awareness programs by media on complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 48(C), pages 1-11.
    16. Namilae, S. & Srinivasan, A. & Mubayi, A. & Scotch, M. & Pahle, R., 2017. "Self-propelled pedestrian dynamics model: Application to passenger movement and infection propagation in airplanes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 248-260.
    17. Boni, Maciej F. & Galvani, Alison P. & Wickelgren, Abraham L. & Malani, Anup, 2013. "Economic epidemiology of avian influenza on smallholder poultry farms," Theoretical Population Biology, Elsevier, vol. 90(C), pages 135-144.
    18. Maud Marsot & Séverine Rautureau & Barbara Dufour & Benoit Durand, 2014. "Impact of Stakeholders Influence, Geographic Level and Risk Perception on Strategic Decisions in Simulated Foot and Mouth Disease Epizootics in France," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-16, January.
    19. Parham, Paul E. & Singh, Brajendra K. & Ferguson, Neil M., 2008. "Analytic approximation of spatial epidemic models of foot and mouth disease," Theoretical Population Biology, Elsevier, vol. 73(3), pages 349-368.
    20. Finlay Campbell & Anne Cori & Neil Ferguson & Thibaut Jombart, 2019. "Bayesian inference of transmission chains using timing of symptoms, pathogen genomes and contact data," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-20, March.
    21. Hennessy, David A. & Rault, Arnaud, 2023. "On systematically insufficient biosecurity actions and policies to manage infectious animal disease," Ecological Economics, Elsevier, vol. 206(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0053432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.