IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v113y2018icp197-208.html
   My bibliography  Save this article

Study of an eco-epidemiological model with Z-type control

Author

Listed:
  • Alzahrani, Abdullah K.
  • Alshomrani, Ali Saleh
  • Pal, Nikhil
  • Samanta, Sudip

Abstract

In the present paper, an eco-epidemic model with Z-type control mechanism has been proposed and analyzed. We consider a predator-prey model with Holling type-II functional response, where prey is subjected to disease infection. We observe that disease may destabilize the system by producing chaotic oscillations. To confirm the occurrence of chaos, we draw the Poincare map and also compute the Lyapunov exponents. We further observe that if the indirect Z-controller is applied in the predator population, then the chaos as well as the disease can be eliminated from the system. To explore the global dynamics of the system and the possible applications of Z-type control mechanism, we perform extensive numerical experiments.

Suggested Citation

  • Alzahrani, Abdullah K. & Alshomrani, Ali Saleh & Pal, Nikhil & Samanta, Sudip, 2018. "Study of an eco-epidemiological model with Z-type control," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 197-208.
  • Handle: RePEc:eee:chsofr:v:113:y:2018:i:c:p:197-208
    DOI: 10.1016/j.chaos.2018.06.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918303850
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.06.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neil M. Ferguson & Christl A. Donnelly & Roy M. Anderson, 2001. "Transmission intensity and impact of control policies on the foot and mouth epidemic in Great Britain," Nature, Nature, vol. 413(6855), pages 542-548, October.
    2. Saifuddin, Md. & Biswas, Santanu & Samanta, Sudip & Sarkar, Susmita & Chattopadhyay, Joydev, 2016. "Complex dynamics of an eco-epidemiological model with different competition coefficients and weak Allee in the predator," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 270-285.
    3. David M. Morens & Gregory K. Folkers & Anthony S. Fauci, 2004. "The challenge of emerging and re-emerging infectious diseases," Nature, Nature, vol. 430(6996), pages 242-249, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bashkirtseva, Irina & Ryashko, Lev & Ryazanova, Tatyana, 2020. "Analysis of regular and chaotic dynamics in a stochastic eco-epidemiological model," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).
    2. Lacitignola, Deborah & Diele, Fasma, 2021. "Using awareness to Z-control a SEIR model with overexposure: Insights on Covid-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    3. Gupta, Ashvini & Dubey, Balram, 2022. "Bifurcation and chaos in a delayed eco-epidemic model induced by prey configuration," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    4. Mandal, Dibyendu Sekhar & Chekroun, Abdennasser & Samanta, Sudip & Chattopadhyay, Joydev, 2021. "A mathematical study of a crop-pest–natural enemy model with Z-type control," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 187(C), pages 468-488.
    5. Senapati, Abhishek & Panday, Pijush & Samanta, Sudip & Chattopadhyay, Joydev, 2020. "Disease control through removal of population using Z-control approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ian E. Fellows & Mark S. Handcock, 2023. "Modeling of networked populations when data is sampled or missing," METRON, Springer;Sapienza Università di Roma, vol. 81(1), pages 21-35, April.
    2. Deqiao Tian & Tao Zheng, 2015. "Emerging infectious disease: trends in the literature on SARS and H7N9 influenza," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 485-495, October.
    3. Li, Sen & Vanwambeke, Sophie O. & Licoppe, Alain M. & Speybroeck, Niko, 2014. "Impacts of deer management practices on the spatial dynamics of the tick Ixodes ricinus: A scenario analysis," Ecological Modelling, Elsevier, vol. 276(C), pages 1-13.
    4. Kow-Tong Chen, 2022. "Emerging Infectious Diseases and One Health: Implication for Public Health," IJERPH, MDPI, vol. 19(15), pages 1-4, July.
    5. Shujuan Li & Lingli Zhu & Lidan Zhang & Guoyan Zhang & Hongyan Ren & Liang Lu, 2023. "Urbanization-Related Environmental Factors and Hemorrhagic Fever with Renal Syndrome: A Review Based on Studies Taken in China," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    6. Rob Deardon & Babak Habibzadeh & Hau Yi Chung, 2012. "Spatial measurement error in infectious disease models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(5), pages 1139-1150, November.
    7. Nuur Hafizah Md Iderus & Sarbhan Singh Lakha Singh & Sumarni Mohd Ghazali & Cheong Yoon Ling & Tan Cia Vei & Ahmed Syahmi Syafiq Md Zamri & Nadhar Ahmad Jaafar & Qistina Ruslan & Nur Huda Ahmad Jaghfa, 2022. "Correlation between Population Density and COVID-19 Cases during the Third Wave in Malaysia: Effect of the Delta Variant," IJERPH, MDPI, vol. 19(12), pages 1-17, June.
    8. Ioannidis, John P.A. & Cripps, Sally & Tanner, Martin A., 2022. "Forecasting for COVID-19 has failed," International Journal of Forecasting, Elsevier, vol. 38(2), pages 423-438.
    9. Don Klinkenberg & Christophe Fraser & Hans Heesterbeek, 2006. "The Effectiveness of Contact Tracing in Emerging Epidemics," PLOS ONE, Public Library of Science, vol. 1(1), pages 1-7, December.
    10. Krämer, J. & Farwick, J., 2009. "Schäden in der Landwirtschaft durch Maul- und Klauenseuche: Simulationsrechnungen für ausgewählte Modellregionen," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 44, March.
    11. Xiaotong Wen & Feiyu Chen & Yixiang Lin & Hui Zhu & Fang Yuan & Duyi Kuang & Zhihui Jia & Zhaokang Yuan, 2020. "Microbial Indicators and Their Use for Monitoring Drinking Water Quality—A Review," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    12. Deqiao Tian & Yunzhou Yu & Yumin Wang & Tao Zheng, 2012. "Comparison of trends in the quantity and variety of Science Citation Index (SCI) literature on human pathogens between China and the United States," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 1019-1027, December.
    13. Ascioti, Fortunato A. & Mangano, Maria Cristina & Marcianò, Claudio & Sarà, Gianluca, 2022. "The sanitation service of seagrasses – Dependencies and implications for the estimation of avoided costs," Ecosystem Services, Elsevier, vol. 54(C).
    14. Hui-Yi Yeh & Kou-Huang Chen & Kow-Tong Chen, 2018. "Environmental Determinants of Infectious Disease Transmission: A Focus on One Health Concept," IJERPH, MDPI, vol. 15(6), pages 1-3, June.
    15. Nicodemo, Catia & Barzin, Samira & Lasserson, Daniel S. & Moscone, Francesco & Redding, Stuart & Shaikh, Mujaheed & Cavalli, Nicolò, 2020. "Measuring Geographical Disparities in England at the Time of COVID-19: Results Using a Composite Indicator of Population Vulnerability," IZA Discussion Papers 13757, Institute of Labor Economics (IZA).
    16. Wenting Yang & Jiantong Zhang & Ruolin Ma, 2020. "The Prediction of Infectious Diseases: A Bibliometric Analysis," IJERPH, MDPI, vol. 17(17), pages 1-19, August.
    17. Wolfgang Brozek & Christof Falkenberg, 2021. "Industrial Animal Farming and Zoonotic Risk: COVID-19 as a Gateway to Sustainable Change? A Scoping Study," Sustainability, MDPI, vol. 13(16), pages 1-30, August.
    18. Hu, Xin & Wang, Zhishuang & Sun, Qingyi & Chen, Jiaxing & Zhao, Dawei & Xia, Chengyi, 2024. "Coupled propagation between one communicable disease and related two types of information on multiplex networks with simplicial complexes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).
    19. Mutsaers, Inge, 2015. "One-health approach as counter-measure against “autoimmune” responses in biosecurity," Social Science & Medicine, Elsevier, vol. 129(C), pages 123-130.
    20. Montazeri Hesam & Little Susan & Mozaffarilegha Mozhgan & Beerenwinkel Niko & DeGruttola Victor, 2020. "Bayesian reconstruction of transmission trees from genetic sequences and uncertain infection times," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 19(4-6), pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:113:y:2018:i:c:p:197-208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.