IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v19y2020i4-6p13n1.html
   My bibliography  Save this article

Bayesian reconstruction of transmission trees from genetic sequences and uncertain infection times

Author

Listed:
  • Montazeri Hesam

    (Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Ghods 37, 1417614335Tehran, Iran)

  • Little Susan

    (Department of Medicine, University of California San Diego, 220 Dickinson St, San Diego, CA92103-8208, USA)

  • Mozaffarilegha Mozhgan

    (Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Ghods 37, 1417614335Tehran, Iran)

  • Beerenwinkel Niko

    (Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058Basel, Switzerland)

  • DeGruttola Victor

    (Harvard TH Chan School of Public Health, 665 Huntington Ave, Boston, MA02115, USA)

Abstract

Genetic sequence data of pathogens are increasingly used to investigate transmission dynamics in both endemic diseases and disease outbreaks. Such research can aid in the development of appropriate interventions and in the design of studies to evaluate them. Several computational methods have been proposed to infer transmission chains from sequence data; however, existing methods do not generally reliably reconstruct transmission trees because genetic sequence data or inferred phylogenetic trees from such data contain insufficient information for accurate estimation of transmission chains. Here, we show by simulation studies that incorporating infection times, even when they are uncertain, can greatly improve the accuracy of reconstruction of transmission trees. To achieve this improvement, we propose a Bayesian inference methods using Markov chain Monte Carlo that directly draws samples from the space of transmission trees under the assumption of complete sampling of the outbreak. The likelihood of each transmission tree is computed by a phylogenetic model by treating its internal nodes as transmission events. By a simulation study, we demonstrate that accuracy of the reconstructed transmission trees depends mainly on the amount of information available on times of infection; we show superiority of the proposed method to two alternative approaches when infection times are known up to specified degrees of certainty. In addition, we illustrate the use of a multiple imputation framework to study features of epidemic dynamics, such as the relationship between characteristics of nodes and average number of outbound edges or inbound edges, signifying possible transmission events from and to nodes. We apply the proposed method to a transmission cluster in San Diego and to a dataset from the 2014 Sierra Leone Ebola virus outbreak and investigate the impact of biological, behavioral, and demographic factors.

Suggested Citation

  • Montazeri Hesam & Little Susan & Mozaffarilegha Mozhgan & Beerenwinkel Niko & DeGruttola Victor, 2020. "Bayesian reconstruction of transmission trees from genetic sequences and uncertain infection times," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 19(4-6), pages 1-13, December.
  • Handle: RePEc:bpj:sagmbi:v:19:y:2020:i:4-6:p:13:n:1
    DOI: 10.1515/sagmb-2019-0026
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/sagmb-2019-0026
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/sagmb-2019-0026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neil M. Ferguson & Christl A. Donnelly & Roy M. Anderson, 2001. "Transmission intensity and impact of control policies on the foot and mouth epidemic in Great Britain," Nature, Nature, vol. 413(6855), pages 542-548, October.
    2. Joel O Wertheim & Sergei L Kosakovsky Pond & Susan J Little & Victor De Gruttola, 2011. "Using HIV Transmission Networks to Investigate Community Effects in HIV Prevention Trials," PLOS ONE, Public Library of Science, vol. 6(11), pages 1-7, November.
    3. Miranda L. Lynch & Victor DeGruttola, 2015. "Predicting time to threshold for initiating antiretroviral treatment to evaluate cost of treatment as prevention of human immunodeficiency virus," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(2), pages 359-375, February.
    4. Matthew Hall & Mark Woolhouse & Andrew Rambaut, 2015. "Epidemic Reconstruction in a Phylogenetics Framework: Transmission Trees as Partitions of the Node Set," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-36, December.
    5. Marco J Morelli & Gaël Thébaud & Joël Chadœuf & Donald P King & Daniel T Haydon & Samuel Soubeyrand, 2012. "A Bayesian Inference Framework to Reconstruct Transmission Trees Using Epidemiological and Genetic Data," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-14, November.
    6. M. J. Keeling & M. E. J. Woolhouse & R. M. May & G. Davies & B. T. Grenfell, 2003. "Modelling vaccination strategies against foot-and-mouth disease," Nature, Nature, vol. 421(6919), pages 136-142, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marco J Morelli & Gaël Thébaud & Joël Chadœuf & Donald P King & Daniel T Haydon & Samuel Soubeyrand, 2012. "A Bayesian Inference Framework to Reconstruct Transmission Trees Using Epidemiological and Genetic Data," PLOS Computational Biology, Public Library of Science, vol. 8(11), pages 1-14, November.
    2. Parham, Paul E. & Singh, Brajendra K. & Ferguson, Neil M., 2008. "Analytic approximation of spatial epidemic models of foot and mouth disease," Theoretical Population Biology, Elsevier, vol. 73(3), pages 349-368.
    3. Finlay Campbell & Anne Cori & Neil Ferguson & Thibaut Jombart, 2019. "Bayesian inference of transmission chains using timing of symptoms, pathogen genomes and contact data," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-20, March.
    4. Hennessy, David A. & Rault, Arnaud, 2023. "On systematically insufficient biosecurity actions and policies to manage infectious animal disease," Ecological Economics, Elsevier, vol. 206(C).
    5. Ian E. Fellows & Mark S. Handcock, 2023. "Modeling of networked populations when data is sampled or missing," METRON, Springer;Sapienza Università di Roma, vol. 81(1), pages 21-35, April.
    6. David R J Pleydell & Samuel Soubeyrand & Sylvie Dallot & Gérard Labonne & Joël Chadœuf & Emmanuel Jacquot & Gaël Thébaud, 2018. "Estimation of the dispersal distances of an aphid-borne virus in a patchy landscape," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-24, April.
    7. Rob Deardon & Babak Habibzadeh & Hau Yi Chung, 2012. "Spatial measurement error in infectious disease models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(5), pages 1139-1150, November.
    8. Stefan Sellman & Kimberly Tsao & Michael J Tildesley & Peter Brommesson & Colleen T Webb & Uno Wennergren & Matt J Keeling & Tom Lindström, 2018. "Need for speed: An optimized gridding approach for spatially explicit disease simulations," PLOS Computational Biology, Public Library of Science, vol. 14(4), pages 1-27, April.
    9. Ioannidis, John P.A. & Cripps, Sally & Tanner, Martin A., 2022. "Forecasting for COVID-19 has failed," International Journal of Forecasting, Elsevier, vol. 38(2), pages 423-438.
    10. Don Klinkenberg & Christophe Fraser & Hans Heesterbeek, 2006. "The Effectiveness of Contact Tracing in Emerging Epidemics," PLOS ONE, Public Library of Science, vol. 1(1), pages 1-7, December.
    11. Krämer, J. & Farwick, J., 2009. "Schäden in der Landwirtschaft durch Maul- und Klauenseuche: Simulationsrechnungen für ausgewählte Modellregionen," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 44, March.
    12. Peyrard, N. & Dieckmann, U. & Franc, A., 2008. "Long-range correlations improve understanding of the influence of network structure on contact dynamics," Theoretical Population Biology, Elsevier, vol. 73(3), pages 383-394.
    13. Wang, Yi & Cao, Jinde & Sun, Gui-Quan & Li, Jing, 2014. "Effect of time delay on pattern dynamics in a spatial epidemic model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 137-148.
    14. Rakowski, Franciszek & Gruziel, Magdalena & Bieniasz-Krzywiec, Łukasz & Radomski, Jan P., 2010. "Influenza epidemic spread simulation for Poland — a large scale, individual based model study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(16), pages 3149-3165.
    15. Max S Y Lau & Bryan T Grenfell & Colin J Worby & Gavin J Gibson, 2019. "Model diagnostics and refinement for phylodynamic models," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-17, April.
    16. Pilwon Kim & Chang Hyeong Lee, 2018. "Epidemic Spreading in Complex Networks with Resilient Nodes: Applications to FMD," Complexity, Hindawi, vol. 2018, pages 1-9, March.
    17. Wenting Yang & Jiantong Zhang & Ruolin Ma, 2020. "The Prediction of Infectious Diseases: A Bibliometric Analysis," IJERPH, MDPI, vol. 17(17), pages 1-19, August.
    18. Tom Kompas & Pham Van Ha & Hoa-Thi-Minh Nguyen & Graeme Garner & Sharon Roche & Iain East, 2020. "Optimal surveillance against foot-and-mouth disease: A sample average approximation approach," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-21, July.
    19. Kompas, Tom & Ha, Pham Van & Nguyen, Hoa Thi Minh & East, Iain & Roche, Sharon & Garner, Graeme, 2017. "Optimal surveillance against foot-and-mouth disease: the case of bulk milk testing in Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 61(4), October.
    20. Max S Y Lau & Gavin J Gibson & Hola Adrakey & Amanda McClelland & Steven Riley & Jon Zelner & George Streftaris & Sebastian Funk & Jessica Metcalf & Benjamin D Dalziel & Bryan T Grenfell, 2017. "A mechanistic spatio-temporal framework for modelling individual-to-individual transmission—With an application to the 2014-2015 West Africa Ebola outbreak," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:19:y:2020:i:4-6:p:13:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.