IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-36554-5.html
   My bibliography  Save this article

Low-dimensional encoding of decisions in parietal cortex reflects long-term training history

Author

Listed:
  • Kenneth W. Latimer

    (University of Chicago)

  • David J. Freedman

    (University of Chicago)

Abstract

Neurons in parietal cortex exhibit task-related activity during decision-making tasks. However, it remains unclear how long-term training to perform different tasks over months or even years shapes neural computations and representations. We examine lateral intraparietal area (LIP) responses during a visual motion delayed-match-to-category task. We consider two pairs of male macaque monkeys with different training histories: one trained only on the categorization task, and another first trained to perform fine motion-direction discrimination (i.e., pretrained). We introduce a novel analytical approach—generalized multilinear models—to quantify low-dimensional, task-relevant components in population activity. During the categorization task, we found stronger cosine-like motion-direction tuning in the pretrained monkeys than in the category-only monkeys, and that the pretrained monkeys’ performance depended more heavily on fine discrimination between sample and test stimuli. These results suggest that sensory representations in LIP depend on the sequence of tasks that the animals have learned, underscoring the importance of considering training history in studies with complex behavioral tasks.

Suggested Citation

  • Kenneth W. Latimer & David J. Freedman, 2023. "Low-dimensional encoding of decisions in parietal cortex reflects long-term training history," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36554-5
    DOI: 10.1038/s41467-023-36554-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-36554-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-36554-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonathan W. Pillow & Jonathon Shlens & Liam Paninski & Alexander Sher & Alan M. Litke & E. J. Chichilnisky & Eero P. Simoncelli, 2008. "Spatio-temporal correlations and visual signalling in a complete neuronal population," Nature, Nature, vol. 454(7207), pages 995-999, August.
    2. Louis J. Toth & John A. Assad, 2002. "Dynamic coding of behaviourally relevant stimuli in parietal cortex," Nature, Nature, vol. 415(6868), pages 165-168, January.
    3. Nicholas A. Steinmetz & Peter Zatka-Haas & Matteo Carandini & Kenneth D. Harris, 2019. "Distributed coding of choice, action and engagement across the mouse brain," Nature, Nature, vol. 576(7786), pages 266-273, December.
    4. Simon Byrne & Mark Girolami, 2013. "Geodesic Monte Carlo on Embedded Manifolds," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 825-845, December.
    5. Carsen Stringer & Marius Pachitariu & Nicholas Steinmetz & Matteo Carandini & Kenneth D. Harris, 2019. "High-dimensional geometry of population responses in visual cortex," Nature, Nature, vol. 571(7765), pages 361-365, July.
    6. Hua Zhou & Lexin Li & Hongtu Zhu, 2013. "Tensor Regression with Applications in Neuroimaging Data Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 540-552, June.
    7. Hua Tang & Mitchell R. Riley & Balbir Singh & Xue-Lian Qi & David T. Blake & Christos Constantinidis, 2022. "Prefrontal cortical plasticity during learning of cognitive tasks," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    8. A. B. Sereno & J. H. R. Maunsell, 1998. "Shape selectivity in primate lateral intraparietal cortex," Nature, Nature, vol. 395(6701), pages 500-503, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jérémie Sibille & Carolin Gehr & Jonathan I. Benichov & Hymavathy Balasubramanian & Kai Lun Teh & Tatiana Lupashina & Daniela Vallentin & Jens Kremkow, 2022. "High-density electrode recordings reveal strong and specific connections between retinal ganglion cells and midbrain neurons," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Rong J. B. Zhu & Xue-Xin Wei, 2023. "Unsupervised approach to decomposing neural tuning variability," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Zhewei Zhang & Chaoqun Yin & Tianming Yang, 2022. "Evidence accumulation occurs locally in the parietal cortex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Liu, Jia & Maheu, John M & Song, Yong, 2023. "Identification and Forecasting of Bull and Bear Markets using Multivariate Returns," MPRA Paper 119515, University Library of Munich, Germany.
    5. Arne F Meyer & Jan-Philipp Diepenbrock & Max F K Happel & Frank W Ohl & Jörn Anemüller, 2014. "Discriminative Learning of Receptive Fields from Responses to Non-Gaussian Stimulus Ensembles," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-15, April.
    6. Jonathan Rubin & Nachum Ulanovsky & Israel Nelken & Naftali Tishby, 2016. "The Representation of Prediction Error in Auditory Cortex," PLOS Computational Biology, Public Library of Science, vol. 12(8), pages 1-28, August.
    7. Hayato Maki & Sakriani Sakti & Hiroki Tanaka & Satoshi Nakamura, 2018. "Quality prediction of synthesized speech based on tensor structured EEG signals," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-13, June.
    8. Lucas Rudelt & Daniel González Marx & Michael Wibral & Viola Priesemann, 2021. "Embedding optimization reveals long-lasting history dependence in neural spiking activity," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-51, June.
    9. Pengcheng Zhou & Shawn D Burton & Adam C Snyder & Matthew A Smith & Nathaniel N Urban & Robert E Kass, 2015. "Establishing a Statistical Link between Network Oscillations and Neural Synchrony," PLOS Computational Biology, Public Library of Science, vol. 11(10), pages 1-25, October.
    10. Chelsey Hill & James Li & Matthew J. Schneider & Martin T. Wells, 2021. "The tensor auto‐regressive model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 636-652, July.
    11. Lan Liu & Wei Li & Zhihua Su & Dennis Cook & Luca Vizioli & Essa Yacoub, 2022. "Efficient estimation via envelope chain in magnetic resonance imaging‐based studies," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 481-501, June.
    12. Yuke Yan & James M. Goodman & Dalton D. Moore & Sara A. Solla & Sliman J. Bensmaia, 2020. "Unexpected complexity of everyday manual behaviors," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    13. Fanfan Li & Dingwei Li & Chuanqing Wang & Guolei Liu & Rui Wang & Huihui Ren & Yingjie Tang & Yan Wang & Yitong Chen & Kun Liang & Qi Huang & Mohamad Sawan & Min Qiu & Hong Wang & Bowen Zhu, 2024. "An artificial visual neuron with multiplexed rate and time-to-first-spike coding," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    15. Janice L. Scealy, 2021. "Comments on: Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 68-70, March.
    16. Jason S Prentice & Olivier Marre & Mark L Ioffe & Adrianna R Loback & Gašper Tkačik & Michael J Berry II, 2016. "Error-Robust Modes of the Retinal Population Code," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-32, November.
    17. Daniel Spencer & Rajarshi Guhaniyogi & Raquel Prado, 2020. "Joint Bayesian Estimation of Voxel Activation and Inter-regional Connectivity in fMRI Experiments," Psychometrika, Springer;The Psychometric Society, vol. 85(4), pages 845-869, December.
    18. Yanyun Ren & Xiaobo Bu & Ming Wang & Yue Gong & Junjie Wang & Yuyang Yang & Guijun Li & Meng Zhang & Ye Zhou & Su-Ting Han, 2022. "Synaptic plasticity in self-powered artificial striate cortex for binocular orientation selectivity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    19. Wang, Lei & Zhang, Jing & Li, Bo & Liu, Xiaohui, 2022. "Quantile trace regression via nuclear norm regularization," Statistics & Probability Letters, Elsevier, vol. 182(C).
    20. Urs Köster & Jascha Sohl-Dickstein & Charles M Gray & Bruno A Olshausen, 2014. "Modeling Higher-Order Correlations within Cortical Microcolumns," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-12, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-36554-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.