IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005175.html
   My bibliography  Save this article

Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning

Author

Listed:
  • Jonathan A Michaels
  • Benjamin Dann
  • Hansjörg Scherberger

Abstract

Recent models of movement generation in motor cortex have sought to explain neural activity not as a function of movement parameters, known as representational models, but as a dynamical system acting at the level of the population. Despite evidence supporting this framework, the evaluation of representational models and their integration with dynamical systems is incomplete in the literature. Using a representational velocity-tuning based simulation of center-out reaching, we show that incorporating variable latency offsets between neural activity and kinematics is sufficient to generate rotational dynamics at the level of neural populations, a phenomenon observed in motor cortex. However, we developed a covariance-matched permutation test (CMPT) that reassigns neural data between task conditions independently for each neuron while maintaining overall neuron-to-neuron relationships, revealing that rotations based on the representational model did not uniquely depend on the underlying condition structure. In contrast, rotations based on either a dynamical model or motor cortex data depend on this relationship, providing evidence that the dynamical model more readily explains motor cortex activity. Importantly, implementing a recurrent neural network we demonstrate that both representational tuning properties and rotational dynamics emerge, providing evidence that a dynamical system can reproduce previous findings of representational tuning. Finally, using motor cortex data in combination with the CMPT, we show that results based on small numbers of neurons or conditions should be interpreted cautiously, potentially informing future experimental design. Together, our findings reinforce the view that representational models lack the explanatory power to describe complex aspects of single neuron and population level activity.Author Summary: The question of how the brain generates movement has been extensively studied, yet multiple competing models exist. Representational approaches relate the activity of single neurons to movement parameters such as velocity and position, approaches useful for the decoding of movement intentions, while the dynamical systems approach predicts that neural activity should evolve in a predictable way based on population activity. Existing representational models cannot reproduce the recent finding in monkeys that predictable rotational patterns underlie motor cortex activity during reach initiation, a finding predicted by a dynamical model in which muscle activity is a direct combination of neural population rotations. However, previous simulations did not consider an essential aspect of representational models: variable time offsets between neurons and kinematics. Whereas these offsets reveal rotational patterns in the model, these rotations are statistically different from those observed in the brain and predicted by a dynamical model. Importantly, a simple recurrent neural network model also showed rotational patterns statistically similar to those observed in the brain, supporting the idea that dynamical systems-based approaches may provide a powerful explanation of motor cortex function.

Suggested Citation

  • Jonathan A Michaels & Benjamin Dann & Hansjörg Scherberger, 2016. "Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-22, November.
  • Handle: RePEc:plo:pcbi00:1005175
    DOI: 10.1371/journal.pcbi.1005175
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005175
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005175&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leigh R. Hochberg & Daniel Bacher & Beata Jarosiewicz & Nicolas Y. Masse & John D. Simeral & Joern Vogel & Sami Haddadin & Jie Liu & Sydney S. Cash & Patrick van der Smagt & John P. Donoghue, 2012. "Reach and grasp by people with tetraplegia using a neurally controlled robotic arm," Nature, Nature, vol. 485(7398), pages 372-375, May.
    2. Meel Velliste & Sagi Perel & M. Chance Spalding & Andrew S. Whitford & Andrew B. Schwartz, 2008. "Cortical control of a prosthetic arm for self-feeding," Nature, Nature, vol. 453(7198), pages 1098-1101, June.
    3. Stephen H. Scott & Paul L. Gribble & Kirsten M. Graham & D. William Cabel, 2001. "Dissociation between hand motion and population vectors from neural activity in motor cortex," Nature, Nature, vol. 413(6852), pages 161-165, September.
    4. Mark M. Churchland & John P. Cunningham & Matthew T. Kaufman & Justin D. Foster & Paul Nuyujukian & Stephen I. Ryu & Krishna V. Shenoy, 2012. "Neural population dynamics during reaching," Nature, Nature, vol. 487(7405), pages 51-56, July.
    5. Jonathan C. Kao & Paul Nuyujukian & Stephen I. Ryu & Mark M. Churchland & John P. Cunningham & Krishna V. Shenoy, 2015. "Single-trial dynamics of motor cortex and their applications to brain-machine interfaces," Nature Communications, Nature, vol. 6(1), pages 1-12, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Svenja Melbaum & Eleonora Russo & David Eriksson & Artur Schneider & Daniel Durstewitz & Thomas Brox & Ilka Diester, 2022. "Conserved structures of neural activity in sensorimotor cortex of freely moving rats allow cross-subject decoding," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Vahid Rostami & Thomas Rost & Felix Johannes Schmitt & Sacha Jennifer Albada & Alexa Riehle & Martin Paul Nawrot, 2024. "Spiking attractor model of motor cortex explains modulation of neural and behavioral variability by prior target information," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    3. Tianwei Wang & Yun Chen & Yiheng Zhang & He Cui, 2024. "Multiplicative joint coding in preparatory activity for reaching sequence in macaque motor cortex," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. David A. Sabatini & Matthew T. Kaufman, 2024. "Reach-dependent reorientation of rotational dynamics in motor cortex," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Rishi Rajalingham & Aída Piccato & Mehrdad Jazayeri, 2022. "Recurrent neural networks with explicit representation of dynamic latent variables can mimic behavioral patterns in a physical inference task," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josh Merel & David Carlson & Liam Paninski & John P Cunningham, 2016. "Neuroprosthetic Decoder Training as Imitation Learning," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-24, May.
    2. Andrey Eliseyev & Tetiana Aksenova, 2016. "Penalized Multi-Way Partial Least Squares for Smooth Trajectory Decoding from Electrocorticographic (ECoG) Recording," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-19, May.
    3. Andrés Úbeda & Enrique Hortal & Eduardo Iáñez & Carlos Perez-Vidal & Jose M Azorín, 2015. "Assessing Movement Factors in Upper Limb Kinematics Decoding from EEG Signals," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-12, May.
    4. Han-Lin Hsieh & Maryam M Shanechi, 2018. "Optimizing the learning rate for adaptive estimation of neural encoding models," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-34, May.
    5. Hong Gi Yeom & June Sic Kim & Chun Kee Chung, 2014. "High-Accuracy Brain-Machine Interfaces Using Feedback Information," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-7, July.
    6. David A. Sabatini & Matthew T. Kaufman, 2024. "Reach-dependent reorientation of rotational dynamics in motor cortex," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    7. Sanaya N. Shroff & Eric Lowet & Sudiksha Sridhar & Howard J. Gritton & Mohammed Abumuaileq & Hua-An Tseng & Cyrus Cheung & Samuel L. Zhou & Krishnakanth Kondabolu & Xue Han, 2023. "Striatal cholinergic interneuron membrane voltage tracks locomotor rhythms in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Shan Yu & Andreas Klaus & Hongdian Yang & Dietmar Plenz, 2014. "Scale-Invariant Neuronal Avalanche Dynamics and the Cut-Off in Size Distributions," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-12, June.
    9. Ian S Howard & David W Franklin, 2015. "Neural Tuning Functions Underlie Both Generalization and Interference," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-21, June.
    10. Linlin Li & Shufang Zhao & Wenhao Ran & Zhexin Li & Yongxu Yan & Bowen Zhong & Zheng Lou & Lili Wang & Guozhen Shen, 2022. "Dual sensing signal decoupling based on tellurium anisotropy for VR interaction and neuro-reflex system application," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Pierre O. Boucher & Tian Wang & Laura Carceroni & Gary Kane & Krishna V. Shenoy & Chandramouli Chandrasekaran, 2023. "Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    12. Eric A. Kirk & Keenan T. Hope & Samuel J. Sober & Britton A. Sauerbrei, 2024. "An output-null signature of inertial load in motor cortex," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    13. Adrian M Haith & David M Huberdeau & John W Krakauer, 2015. "Hedging Your Bets: Intermediate Movements as Optimal Behavior in the Context of an Incomplete Decision," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-21, March.
    14. Tobias Pistohl & Thomas Sebastian Benedikt Schmidt & Tonio Ball & Andreas Schulze-Bonhage & Ad Aertsen & Carsten Mehring, 2013. "Grasp Detection from Human ECoG during Natural Reach-to-Grasp Movements," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-11, January.
    15. Nir Even-Chen & Blue Sheffer & Saurabh Vyas & Stephen I Ryu & Krishna V Shenoy, 2019. "Structure and variability of delay activity in premotor cortex," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-17, February.
    16. Josh Merel & Donald M Pianto & John P Cunningham & Liam Paninski, 2015. "Encoder-Decoder Optimization for Brain-Computer Interfaces," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-25, June.
    17. Hagai Lalazar & L F Abbott & Eilon Vaadia, 2016. "Tuning Curves for Arm Posture Control in Motor Cortex Are Consistent with Random Connectivity," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-27, May.
    18. Ujwal Chaudhary & Bin Xia & Stefano Silvoni & Leonardo G Cohen & Niels Birbaumer, 2017. "Brain–Computer Interface–Based Communication in the Completely Locked-In State," PLOS Biology, Public Library of Science, vol. 15(1), pages 1-25, January.
    19. Nuri F Ince & Rahul Gupta & Sami Arica & Ahmed H Tewfik & James Ashe & Giuseppe Pellizzer, 2010. "High Accuracy Decoding of Movement Target Direction in Non-Human Primates Based on Common Spatial Patterns of Local Field Potentials," PLOS ONE, Public Library of Science, vol. 5(12), pages 1-11, December.
    20. Keundong Lee & Angelique C. Paulk & Yun Goo Ro & Daniel R. Cleary & Karen J. Tonsfeldt & Yoav Kfir & John S. Pezaris & Youngbin Tchoe & Jihwan Lee & Andrew M. Bourhis & Ritwik Vatsyayan & Joel R. Mart, 2024. "Flexible, scalable, high channel count stereo-electrode for recording in the human brain," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.