IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008969.html
   My bibliography  Save this article

Sequence learning recodes cortical representations instead of strengthening initial ones

Author

Listed:
  • Kristjan Kalm
  • Dennis Norris

Abstract

We contrast two computational models of sequence learning. The associative learner posits that learning proceeds by strengthening existing association weights. Alternatively, recoding posits that learning creates new and more efficient representations of the learned sequences. Importantly, both models propose that humans act as optimal learners but capture different statistics of the stimuli in their internal model. Furthermore, these models make dissociable predictions as to how learning changes the neural representation of sequences. We tested these predictions by using fMRI to extract neural activity patters from the dorsal visual processing stream during a sequence recall task. We observed that only the recoding account can explain the similarity of neural activity patterns, suggesting that participants recode the learned sequences using chunks. We show that associative learning can theoretically store only very limited number of overlapping sequences, such as common in ecological working memory tasks, and hence an efficient learner should recode initial sequence representations.Author summary: The ability to remember multiple individual events as a sequence is necessary for most complex human tasks. There is clear evidence that human sequence learning is accompanied by change in the way sequences are represented in the brain but the exact nature of the change remains unclear. In this study we use brain imaging to ask what is the neural mechanism underpinning sequence learning: we contrast two computational models of learning—associative and recoding—and test their predictions with neural activity data from the dorsal visual processing stream. We provide evidence that, instead of strengthening the initial cortical representations of sequences, learning proceeds by recoding the initial stimuli using a different set of codes. Furthermore, we show that associative learning without recoding is not theoretically capable of supporting long-term memory of short ecological sequences present in every day tasks such as reading, speaking, or navigating.

Suggested Citation

  • Kristjan Kalm & Dennis Norris, 2021. "Sequence learning recodes cortical representations instead of strengthening initial ones," PLOS Computational Biology, Public Library of Science, vol. 17(5), pages 1-34, May.
  • Handle: RePEc:plo:pcbi00:1008969
    DOI: 10.1371/journal.pcbi.1008969
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008969
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008969&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008969?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carsen Stringer & Marius Pachitariu & Nicholas Steinmetz & Matteo Carandini & Kenneth D. Harris, 2019. "High-dimensional geometry of population responses in visual cortex," Nature, Nature, vol. 571(7765), pages 361-365, July.
    2. Hamed Nili & Cai Wingfield & Alexander Walther & Li Su & William Marslen-Wilson & Nikolaus Kriegeskorte, 2014. "A Toolbox for Representational Similarity Analysis," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-11, April.
    3. Arno Klein & Satrajit S Ghosh & Forrest S Bao & Joachim Giard & Yrjö Häme & Eliezer Stavsky & Noah Lee & Brian Rossa & Martin Reuter & Elias Chaibub Neto & Anisha Keshavan, 2017. "Mindboggling morphometry of human brains," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-40, February.
    4. Konrad P. Körding & Daniel M. Wolpert, 2004. "Bayesian integration in sensorimotor learning," Nature, Nature, vol. 427(6971), pages 244-247, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Lahner & Kshitij Dwivedi & Polina Iamshchinina & Monika Graumann & Alex Lascelles & Gemma Roig & Alessandro Thomas Gifford & Bowen Pan & SouYoung Jin & N. Apurva Ratan Murty & Kendrick Kay & , 2024. "Modeling short visual events through the BOLD moments video fMRI dataset and metadata," Nature Communications, Nature, vol. 15(1), pages 1-26, December.
    2. Valentina Krenz & Arjen Alink & Tobias Sommer & Benno Roozendaal & Lars Schwabe, 2023. "Time-dependent memory transformation in hippocampus and neocortex is semantic in nature," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Shih-Wei Wu & Maria F Dal Martello & Laurence T Maloney, 2009. "Sub-Optimal Allocation of Time in Sequential Movements," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-13, December.
    4. Leopold Zizlsperger & Thomas Sauvigny & Thomas Haarmeier, 2012. "Selective Attention Increases Choice Certainty in Human Decision Making," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    5. Satoko Amemori & Ann M. Graybiel & Ken-ichi Amemori, 2024. "Cingulate microstimulation induces negative decision-making via reduced top-down influence on primate fronto-cingulo-striatal network," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    6. Julia Berezutskaya & Zachary V Freudenburg & Umut Güçlü & Marcel A J van Gerven & Nick F Ramsey, 2020. "Brain-optimized extraction of complex sound features that drive continuous auditory perception," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-34, July.
    7. Geonhui Lee & Woong Choi & Hanjin Jo & Wookhyun Park & Jaehyo Kim, 2020. "Analysis of motor control strategy for frontal and sagittal planes of circular tracking movements using visual feedback noise from velocity change and depth information," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-22, November.
    8. Wen-Hao Zhang & Si Wu & Krešimir Josić & Brent Doiron, 2023. "Sampling-based Bayesian inference in recurrent circuits of stochastic spiking neurons," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    9. Thanh-an Pham & Aleix Boquet-Pujadas & Sandip Mondal & Michael Unser & George Barbastathis, 2024. "Deep-prior ODEs augment fluorescence imaging with chemical sensors," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    10. Manoj Kumar & Cameron T Ellis & Qihong Lu & Hejia Zhang & Mihai Capotă & Theodore L Willke & Peter J Ramadge & Nicholas B Turk-Browne & Kenneth A Norman, 2020. "BrainIAK tutorials: User-friendly learning materials for advanced fMRI analysis," PLOS Computational Biology, Public Library of Science, vol. 16(1), pages 1-12, January.
    11. Adam N Sanborn & Ulrik R Beierholm, 2016. "Fast and Accurate Learning When Making Discrete Numerical Estimates," PLOS Computational Biology, Public Library of Science, vol. 12(4), pages 1-28, April.
    12. Hamed Nili & Alexander Walther & Arjen Alink & Nikolaus Kriegeskorte, 2020. "Inferring exemplar discriminability in brain representations," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-28, June.
    13. M. Lumaca & P. E. Keller & G. Baggio & V. Pando-Naude & C. J. Bajada & M. A. Martinez & J. H. Hansen & A. Ravignani & N. Joe & P. Vuust & K. Vulić & K. Sandberg, 2024. "Frontoparietal network topology as a neural marker of musical perceptual abilities," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    14. Seth W. Egger & Stephen G. Lisberger, 2022. "Neural structure of a sensory decoder for motor control," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Yuke Yan & James M. Goodman & Dalton D. Moore & Sara A. Solla & Sliman J. Bensmaia, 2020. "Unexpected complexity of everyday manual behaviors," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    16. Tim Genewein & Eduard Hez & Zeynab Razzaghpanah & Daniel A Braun, 2015. "Structure Learning in Bayesian Sensorimotor Integration," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-27, August.
    17. Ofri Raviv & Merav Ahissar & Yonatan Loewenstein, 2012. "How Recent History Affects Perception: The Normative Approach and Its Heuristic Approximation," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-10, October.
    18. Kenneth W. Latimer & David J. Freedman, 2023. "Low-dimensional encoding of decisions in parietal cortex reflects long-term training history," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    19. Mehrabbeik, Mahtab & Shams-Ahmar, Mohammad & Levine, Alexandra T. & Jafari, Sajad & Merrikhi, Yaser, 2022. "Distinctive nonlinear dimensionality of neural spiking activity in extrastriate cortex during spatial working memory; a Higuchi fractal analysis," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    20. Brocas, Isabelle & Carrillo, Juan D., 2012. "From perception to action: An economic model of brain processes," Games and Economic Behavior, Elsevier, vol. 75(1), pages 81-103.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.