IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-43741-x.html
   My bibliography  Save this article

Blazed oblique plane microscopy reveals scale-invariant inference of brain-wide population activity

Author

Listed:
  • Maximilian Hoffmann

    (Charité – Universitätsmedizin Berlin
    Rockefeller University)

  • Jörg Henninger

    (Charité – Universitätsmedizin Berlin)

  • Johannes Veith

    (Charité – Universitätsmedizin Berlin
    Humboldt University Berlin)

  • Lars Richter

    (Ludwig Maximilians University)

  • Benjamin Judkewitz

    (Charité – Universitätsmedizin Berlin)

Abstract

Due to the size and opacity of vertebrate brains, it has until now been impossible to simultaneously record neuronal activity at cellular resolution across the entire adult brain. As a result, scientists are forced to choose between cellular-resolution microscopy over limited fields-of-view or whole-brain imaging at coarse-grained resolution. Bridging the gap between these spatial scales of understanding remains a major challenge in neuroscience. Here, we introduce blazed oblique plane microscopy to perform brain-wide recording of neuronal activity at cellular resolution in an adult vertebrate. Contrary to common belief, we find that inferences of neuronal population activity are near-independent of spatial scale: a set of randomly sampled neurons has a comparable predictive power as the same number of coarse-grained macrovoxels. Our work thus links cellular resolution with brain-wide scope, challenges the prevailing view that macroscale methods are generally inferior to microscale techniques and underscores the value of multiscale approaches to studying brain-wide activity.

Suggested Citation

  • Maximilian Hoffmann & Jörg Henninger & Johannes Veith & Lars Richter & Benjamin Judkewitz, 2023. "Blazed oblique plane microscopy reveals scale-invariant inference of brain-wide population activity," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43741-x
    DOI: 10.1038/s41467-023-43741-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-43741-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-43741-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carsen Stringer & Marius Pachitariu & Nicholas Steinmetz & Matteo Carandini & Kenneth D. Harris, 2019. "High-dimensional geometry of population responses in visual cortex," Nature, Nature, vol. 571(7765), pages 361-365, July.
    2. Jörn Niessing & Rainer W. Friedrich, 2010. "Olfactory pattern classification by discrete neuronal network states," Nature, Nature, vol. 465(7294), pages 47-52, May.
    3. Nikos K. Logothetis, 2008. "What we can do and what we cannot do with fMRI," Nature, Nature, vol. 453(7197), pages 869-878, June.
    4. Che-Hang Yu & Jeffrey N. Stirman & Yiyi Yu & Riichiro Hira & Spencer L. Smith, 2021. "Diesel2p mesoscope with dual independent scan engines for flexible capture of dynamics in distributed neural circuitry," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    5. Mark M. Churchland & John P. Cunningham & Matthew T. Kaufman & Justin D. Foster & Paul Nuyujukian & Stephen I. Ryu & Krishna V. Shenoy, 2012. "Neural population dynamics during reaching," Nature, Nature, vol. 487(7405), pages 51-56, July.
    6. James J. Jun & Nicholas A. Steinmetz & Joshua H. Siegle & Daniel J. Denman & Marius Bauza & Brian Barbarits & Albert K. Lee & Costas A. Anastassiou & Alexandru Andrei & Çağatay Aydın & Mladen Barbic &, 2017. "Fully integrated silicon probes for high-density recording of neural activity," Nature, Nature, vol. 551(7679), pages 232-236, November.
    7. Yan Zhang & Márton Rózsa & Yajie Liang & Daniel Bushey & Ziqiang Wei & Jihong Zheng & Daniel Reep & Gerard Joey Broussard & Arthur Tsang & Getahun Tsegaye & Sujatha Narayan & Christopher J. Obara & Ji, 2023. "Fast and sensitive GCaMP calcium indicators for imaging neural populations," Nature, Nature, vol. 615(7954), pages 884-891, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edward A. B. Horrocks & Fabio R. Rodrigues & Aman B. Saleem, 2024. "Flexible neural population dynamics govern the speed and stability of sensory encoding in mouse visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    2. Thanh-an Pham & Aleix Boquet-Pujadas & Sandip Mondal & Michael Unser & George Barbastathis, 2024. "Deep-prior ODEs augment fluorescence imaging with chemical sensors," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Jérémie Sibille & Carolin Gehr & Jonathan I. Benichov & Hymavathy Balasubramanian & Kai Lun Teh & Tatiana Lupashina & Daniela Vallentin & Jens Kremkow, 2022. "High-density electrode recordings reveal strong and specific connections between retinal ganglion cells and midbrain neurons," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Ege Altan & Sara A Solla & Lee E Miller & Eric J Perreault, 2021. "Estimating the dimensionality of the manifold underlying multi-electrode neural recordings," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-23, November.
    5. Shan Yu & Andreas Klaus & Hongdian Yang & Dietmar Plenz, 2014. "Scale-Invariant Neuronal Avalanche Dynamics and the Cut-Off in Size Distributions," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-12, June.
    6. repec:hum:wpaper:sfb649dp2014-036 is not listed on IDEAS
    7. Pierre O. Boucher & Tian Wang & Laura Carceroni & Gary Kane & Krishna V. Shenoy & Chandramouli Chandrasekaran, 2023. "Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    8. Adrian M Haith & David M Huberdeau & John W Krakauer, 2015. "Hedging Your Bets: Intermediate Movements as Optimal Behavior in the Context of an Incomplete Decision," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-21, March.
    9. Liang Zou & Huihui Tian & Shouliang Guan & Jianfei Ding & Lei Gao & Jinfen Wang & Ying Fang, 2021. "Self-assembled multifunctional neural probes for precise integration of optogenetics and electrophysiology," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    10. Adam S. Tuzolele Mbuku, 2024. "Evolution of the concept of Homo Economicus in light of advances in Neuroeconomics: towards a more realistic model of economic decision-making [Evolution du concept de l'Homo Economicus à la lumièr," Post-Print hal-04564775, HAL.
    11. Yuke Yan & James M. Goodman & Dalton D. Moore & Sara A. Solla & Sliman J. Bensmaia, 2020. "Unexpected complexity of everyday manual behaviors," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    12. Pan Xu & Yuanlei Yue & Juntao Su & Xiaoqian Sun & Hongfei Du & Zhichao Liu & Rahul Simha & Jianhui Zhou & Chen Zeng & Hui Lu, 2022. "Pattern decorrelation in the mouse medial prefrontal cortex enables social preference and requires MeCP2," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Josh Merel & Donald M Pianto & John P Cunningham & Liam Paninski, 2015. "Encoder-Decoder Optimization for Brain-Computer Interfaces," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-25, June.
    14. Hagai Lalazar & L F Abbott & Eilon Vaadia, 2016. "Tuning Curves for Arm Posture Control in Motor Cortex Are Consistent with Random Connectivity," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-27, May.
    15. Kenneth W. Latimer & David J. Freedman, 2023. "Low-dimensional encoding of decisions in parietal cortex reflects long-term training history," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    16. Olsen, Carmen & Gold, Anna, 2018. "Future research directions at the intersection between cognitive neuroscience research and auditors’ professional skepticism," Journal of Accounting Literature, Elsevier, vol. 41(C), pages 127-141.
    17. Andrea Santoro & Federico Battiston & Maxime Lucas & Giovanni Petri & Enrico Amico, 2024. "Higher-order connectomics of human brain function reveals local topological signatures of task decoding, individual identification, and behavior," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Benjamin R Cowley & Matthew A Smith & Adam Kohn & Byron M Yu, 2016. "Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-31, December.
    19. Seong-Hwan Hwang & Doyoung Park & Ji-Woo Lee & Sue-Hyun Lee & Hyoung F. Kim, 2024. "Convergent representation of values from tactile and visual inputs for efficient goal-directed behavior in the primate putamen," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    20. Joseph Y. Nashed & Daniel J. Gale & Jason P. Gallivan & Douglas J. Cook, 2024. "Changes in cortical manifold structure following stroke and its relation to behavioral recovery in the male macaque," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    21. Sravani Kondapavulur & Stefan M. Lemke & David Darevsky & Ling Guo & Preeya Khanna & Karunesh Ganguly, 2022. "Transition from predictable to variable motor cortex and striatal ensemble patterning during behavioral exploration," Nature Communications, Nature, vol. 13(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-43741-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.