IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006854.html
   My bibliography  Save this article

Myopic control of neural dynamics

Author

Listed:
  • David Hocker
  • Il Memming Park

Abstract

Manipulating the dynamics of neural systems through targeted stimulation is a frontier of research and clinical neuroscience; however, the control schemes considered for neural systems are mismatched for the unique needs of manipulating neural dynamics. An appropriate control method should respect the variability in neural systems, incorporating moment to moment “input” to the neural dynamics and behaving based on the current neural state, irrespective of the past trajectory. We propose such a controller under a nonlinear state-space feedback framework that steers one dynamical system to function as through it were another dynamical system entirely. This “myopic” controller is formulated through a novel variant of a model reference control cost that manipulates dynamics in a short-sighted manner that only sets a target trajectory of a single time step into the future (hence its myopic nature), which omits the need to pre-calculate a rigid and computationally costly neural feedback control solution. To demonstrate the breadth of this control’s utility, two examples with distinctly different applications in neuroscience are studied. First, we show the myopic control’s utility to probe the causal link between dynamics and behavior for cognitive processes by transforming a winner-take-all decision-making system to operate as a robust neural integrator of evidence. Second, an unhealthy motor-like system containing an unwanted beta-oscillation spiral attractor is controlled to function as a healthy motor system, a relevant clinical example for neurological disorders.Author summary: Stimulating a neural system and observing its effect through simultaneous observation offers the promise to better understand how neural systems perform computations, as well as for the treatment of neurological disorders. A powerful perspective for understanding a neural system’s behavior undergoing stimulation is to conceptualize them as dynamical systems, which considers the global effect that stimulation has on the brain, rather than only assessing what impact it has on the recorded signal from the brain. With this more comprehensive perspective comes a central challenge of determining what requirements need to be satisfied to harness neural observations and then stimulate to make one dynamical system function as another one entirely. This could lead to applications such as neural stimulators that make a diseased brain behave like its healthy counterpart, or to make a neural system previously capable of only hasty decision making to wait and accumulate more evidence for a more informed decision. In this work we explore the implications of this new perspective on neural stimulation and derive a simple prescription for using neural observations to inform stimulation protocol that makes one neural system behave like another one.

Suggested Citation

  • David Hocker & Il Memming Park, 2019. "Myopic control of neural dynamics," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-24, March.
  • Handle: RePEc:plo:pcbi00:1006854
    DOI: 10.1371/journal.pcbi.1006854
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006854
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006854&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006854?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Valerio Mante & David Sussillo & Krishna V. Shenoy & William T. Newsome, 2013. "Context-dependent computation by recurrent dynamics in prefrontal cortex," Nature, Nature, vol. 503(7474), pages 78-84, November.
    2. James J. Jun & Nicholas A. Steinmetz & Joshua H. Siegle & Daniel J. Denman & Marius Bauza & Brian Barbarits & Albert K. Lee & Costas A. Anastassiou & Alexandru Andrei & Çağatay Aydın & Mladen Barbic &, 2017. "Fully integrated silicon probes for high-density recording of neural activity," Nature, Nature, vol. 551(7679), pages 232-236, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shailaja Akella & Peter Ledochowitsch & Joshua H. Siegle & Hannah Belski & Daniel D. Denman & Michael A. Buice & Severine Durand & Christof Koch & Shawn R. Olsen & Xiaoxuan Jia, 2025. "Deciphering neuronal variability across states reveals dynamic sensory encoding," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
    2. Spencer Ward & Conor Riley & Erin M. Carey & Jenny Nguyen & Sadik Esener & Axel Nimmerjahn & Donald J. Sirbuly, 2022. "Electro-optical mechanically flexible coaxial microprobes for minimally invasive interfacing with intrinsic neural circuits," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Yan Li & Mitchell Swerdloff & Tianyu She & Asiyah Rahman & Naveen Sharma & Reema Shah & Michael Castellano & Daniel Mogel & Jason Wu & Asim Ahmed & James San Miguel & Jared Cohn & Nikesh Shah & Raddy , 2023. "Robust odor identification in novel olfactory environments in mice," Nature Communications, Nature, vol. 14(1), pages 1-29, December.
    4. Georgia Koppe & Hazem Toutounji & Peter Kirsch & Stefanie Lis & Daniel Durstewitz, 2019. "Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-35, August.
    5. Jan Weber & Anne-Kristin Solbakk & Alejandro O. Blenkmann & Anais Llorens & Ingrid Funderud & Sabine Leske & Pål Gunnar Larsson & Jugoslav Ivanovic & Robert T. Knight & Tor Endestad & Randolph F. Helf, 2024. "Ramping dynamics and theta oscillations reflect dissociable signatures during rule-guided human behavior," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Pierre O. Boucher & Tian Wang & Laura Carceroni & Gary Kane & Krishna V. Shenoy & Chandramouli Chandrasekaran, 2023. "Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    7. Rishi Rajalingham & Aída Piccato & Mehrdad Jazayeri, 2022. "Recurrent neural networks with explicit representation of dynamic latent variables can mimic behavioral patterns in a physical inference task," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    8. Liang Zou & Huihui Tian & Shouliang Guan & Jianfei Ding & Lei Gao & Jinfen Wang & Ying Fang, 2021. "Self-assembled multifunctional neural probes for precise integration of optogenetics and electrophysiology," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Wan-Yu Shih & Hsiang-Yu Yu & Cheng-Chia Lee & Chien-Chen Chou & Chien Chen & Paul W. Glimcher & Shih-Wei Wu, 2023. "Electrophysiological population dynamics reveal context dependencies during decision making in human frontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    10. Wenyi Zhang & Yang Xie & Tianming Yang, 2022. "Reward salience but not spatial attention dominates the value representation in the orbitofrontal cortex," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Nir Even-Chen & Blue Sheffer & Saurabh Vyas & Stephen I Ryu & Krishna V Shenoy, 2019. "Structure and variability of delay activity in premotor cortex," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-17, February.
    12. Hao Guo & Shenbing Kuang & Alexander Gail, 2025. "Sensorimotor environment but not task rule reconfigures population dynamics in rhesus monkey posterior parietal cortex," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    13. Javier G. Orlandi & Mohammad Abdolrahmani & Ryo Aoki & Dmitry R. Lyamzin & Andrea Benucci, 2023. "Distributed context-dependent choice information in mouse posterior cortex," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    14. Keundong Lee & Angelique C. Paulk & Yun Goo Ro & Daniel R. Cleary & Karen J. Tonsfeldt & Yoav Kfir & John S. Pezaris & Youngbin Tchoe & Jihwan Lee & Andrew M. Bourhis & Ritwik Vatsyayan & Joel R. Mart, 2024. "Flexible, scalable, high channel count stereo-electrode for recording in the human brain," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    15. Andrea Santoro & Federico Battiston & Maxime Lucas & Giovanni Petri & Enrico Amico, 2024. "Higher-order connectomics of human brain function reveals local topological signatures of task decoding, individual identification, and behavior," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    16. Rishi Rajalingham & Hansem Sohn & Mehrdad Jazayeri, 2025. "Dynamic tracking of objects in the macaque dorsomedial frontal cortex," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    17. Gustavo Della-Flora Nunes & Lindsay A. Osso & Johana A. Haynes & Lauren Conant & Michael A. Thornton & Michael E. Stockton & Katherine A. Brassell & Amanda Morris & Yessenia I. Mancha Corchado & John , 2025. "Incomplete remyelination via therapeutically enhanced oligodendrogenesis is sufficient to recover visual cortical function," Nature Communications, Nature, vol. 16(1), pages 1-22, December.
    18. Edward A. B. Horrocks & Fabio R. Rodrigues & Aman B. Saleem, 2024. "Flexible neural population dynamics govern the speed and stability of sensory encoding in mouse visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    19. Joao Barbosa & Rémi Proville & Chris C. Rodgers & Michael R. DeWeese & Srdjan Ostojic & Yves Boubenec, 2023. "Early selection of task-relevant features through population gating," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Nir Moneta & Mona M. Garvert & Hauke R. Heekeren & Nicolas W. Schuck, 2023. "Task state representations in vmPFC mediate relevant and irrelevant value signals and their behavioral influence," Nature Communications, Nature, vol. 14(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.