IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-023-44571-7.html
   My bibliography  Save this article

Ramping dynamics and theta oscillations reflect dissociable signatures during rule-guided human behavior

Author

Listed:
  • Jan Weber

    (University Medical Center Tübingen
    University of Tübingen)

  • Anne-Kristin Solbakk

    (University of Oslo
    University of Oslo
    Oslo University Hospital
    Helgeland Hospital)

  • Alejandro O. Blenkmann

    (University of Oslo
    University of Oslo)

  • Anais Llorens

    (University of Oslo
    University of Oslo
    UC Berkeley)

  • Ingrid Funderud

    (University of Oslo
    University of Oslo
    Helgeland Hospital)

  • Sabine Leske

    (University of Oslo
    University of Oslo
    University of Oslo)

  • Pål Gunnar Larsson

    (Oslo University Hospital)

  • Jugoslav Ivanovic

    (Oslo University Hospital)

  • Robert T. Knight

    (UC Berkeley
    UC Berkeley)

  • Tor Endestad

    (University of Oslo
    University of Oslo)

  • Randolph F. Helfrich

    (University Medical Center Tübingen)

Abstract

Contextual cues and prior evidence guide human goal-directed behavior. The neurophysiological mechanisms that implement contextual priors to guide subsequent actions in the human brain remain unclear. Using intracranial electroencephalography (iEEG), we demonstrate that increasing uncertainty introduces a shift from a purely oscillatory to a mixed processing regime with an additional ramping component. Oscillatory and ramping dynamics reflect dissociable signatures, which likely differentially contribute to the encoding and transfer of different cognitive variables in a cue-guided motor task. The results support the idea that prefrontal activity encodes rules and ensuing actions in distinct coding subspaces, while theta oscillations synchronize the prefrontal-motor network, possibly to guide action execution. Collectively, our results reveal how two key features of large-scale neural population activity, namely continuous ramping dynamics and oscillatory synchrony, jointly support rule-guided human behavior.

Suggested Citation

  • Jan Weber & Anne-Kristin Solbakk & Alejandro O. Blenkmann & Anais Llorens & Ingrid Funderud & Sabine Leske & Pål Gunnar Larsson & Jugoslav Ivanovic & Robert T. Knight & Tor Endestad & Randolph F. Helf, 2024. "Ramping dynamics and theta oscillations reflect dissociable signatures during rule-guided human behavior," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44571-7
    DOI: 10.1038/s41467-023-44571-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-44571-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-44571-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Julian Q. Kosciessa & Ulman Lindenberger & Douglas D. Garrett, 2021. "Thalamocortical excitability modulation guides human perception under uncertainty," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    2. Joshua I. Glaser & Matthew G. Perich & Pavan Ramkumar & Lee E. Miller & Konrad P. Kording, 2018. "Population coding of conditional probability distributions in dorsal premotor cortex," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
    3. Bijan Pesaran & Matthew J. Nelson & Richard A. Andersen, 2008. "Free choice activates a decision circuit between frontal and parietal cortex," Nature, Nature, vol. 453(7193), pages 406-409, May.
    4. Mattia Rigotti & Omri Barak & Melissa R. Warden & Xiao-Jing Wang & Nathaniel D. Daw & Earl K. Miller & Stefano Fusi, 2013. "The importance of mixed selectivity in complex cognitive tasks," Nature, Nature, vol. 497(7451), pages 585-590, May.
    5. Marije ter Wal & Artem Platonov & Pasquale Cardellicchio & Veronica Pelliccia & Giorgio LoRusso & Ivana Sartori & Pietro Avanzini & Guy A. Orban & Paul H. E. Tiesinga, 2020. "Human stereoEEG recordings reveal network dynamics of decision-making in a rule-switching task," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    6. Juan A. Gallego & Matthew G. Perich & Stephanie N. Naufel & Christian Ethier & Sara A. Solla & Lee E. Miller, 2018. "Cortical population activity within a preserved neural manifold underlies multiple motor behaviors," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    7. Rafi U. Haque & Sara K. Inati & Allan I. Levey & Kareem A. Zaghloul, 2020. "Feedforward prediction error signals during episodic memory retrieval," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    8. Matar Haller & John Case & Nathan E. Crone & Edward F. Chang & David King-Stephens & Kenneth D. Laxer & Peter B. Weber & Josef Parvizi & Robert T. Knight & Avgusta Y. Shestyuk, 2018. "Persistent neuronal activity in human prefrontal cortex links perception and action," Nature Human Behaviour, Nature, vol. 2(1), pages 80-91, January.
    9. Valerio Mante & David Sussillo & Krishna V. Shenoy & William T. Newsome, 2013. "Context-dependent computation by recurrent dynamics in prefrontal cortex," Nature, Nature, vol. 503(7474), pages 78-84, November.
    10. Randolph F. Helfrich & Janna D. Lendner & Bryce A. Mander & Heriberto Guillen & Michelle Paff & Lilit Mnatsakanyan & Sumeet Vadera & Matthew P. Walker & Jack J. Lin & Robert T. Knight, 2019. "Bidirectional prefrontal-hippocampal dynamics organize information transfer during sleep in humans," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    11. Erin L. Rich & Joni D. Wallis, 2017. "Spatiotemporal dynamics of information encoding revealed in orbitofrontal high-gamma," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    12. Megan Wang & Christéva Montanède & Chandramouli Chandrasekaran & Diogo Peixoto & Krishna V. Shenoy & John F. Kalaska, 2019. "Macaque dorsal premotor cortex exhibits decision-related activity only when specific stimulus–response associations are known," Nature Communications, Nature, vol. 10(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ege Altan & Sara A Solla & Lee E Miller & Eric J Perreault, 2021. "Estimating the dimensionality of the manifold underlying multi-electrode neural recordings," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-23, November.
    2. Pierre O. Boucher & Tian Wang & Laura Carceroni & Gary Kane & Krishna V. Shenoy & Chandramouli Chandrasekaran, 2023. "Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    3. Wan-Yu Shih & Hsiang-Yu Yu & Cheng-Chia Lee & Chien-Chen Chou & Chien Chen & Paul W. Glimcher & Shih-Wei Wu, 2023. "Electrophysiological population dynamics reveal context dependencies during decision making in human frontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    4. Wenyi Zhang & Yang Xie & Tianming Yang, 2022. "Reward salience but not spatial attention dominates the value representation in the orbitofrontal cortex," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Javier G. Orlandi & Mohammad Abdolrahmani & Ryo Aoki & Dmitry R. Lyamzin & Andrea Benucci, 2023. "Distributed context-dependent choice information in mouse posterior cortex," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Joao Barbosa & Rémi Proville & Chris C. Rodgers & Michael R. DeWeese & Srdjan Ostojic & Yves Boubenec, 2023. "Early selection of task-relevant features through population gating," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Benjamin R Cowley & Matthew A Smith & Adam Kohn & Byron M Yu, 2016. "Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-31, December.
    8. Kiyohito Iigaya & Sanghyun Yi & Iman A. Wahle & Sandy Tanwisuth & Logan Cross & John P. O’Doherty, 2023. "Neural mechanisms underlying the hierarchical construction of perceived aesthetic value," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    9. Takuya Ito & Guangyu Robert Yang & Patryk Laurent & Douglas H. Schultz & Michael W. Cole, 2022. "Constructing neural network models from brain data reveals representational transformations linked to adaptive behavior," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    10. Noel Federman & Sebastián A. Romano & Macarena Amigo-Duran & Lucca Salomon & Antonia Marin-Burgin, 2024. "Acquisition of non-olfactory encoding improves odour discrimination in olfactory cortex," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    11. Daniel Durstewitz, 2017. "A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-33, June.
    12. Kaushik J. Lakshminarasimhan & Eric Avila & Xaq Pitkow & Dora E. Angelaki, 2023. "Dynamical latent state computation in the male macaque posterior parietal cortex," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    13. J. L. Amengual & F. Di Bello & S. Ben Hadj Hassen & Suliann Ben Hamed, 2022. "Distractibility and impulsivity neural states are distinct from selective attention and modulate the implementation of spatial attention," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Laura E. Suárez & Agoston Mihalik & Filip Milisav & Kenji Marshall & Mingze Li & Petra E. Vértes & Guillaume Lajoie & Bratislav Misic, 2024. "Connectome-based reservoir computing with the conn2res toolbox," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    15. Arno Onken & Jue Xie & Stefano Panzeri & Camillo Padoa-Schioppa, 2019. "Categorical encoding of decision variables in orbitofrontal cortex," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-27, October.
    16. Qianli Yang & Edgar Walker & R. James Cotton & Andreas S. Tolias & Xaq Pitkow, 2021. "Revealing nonlinear neural decoding by analyzing choices," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    17. Márton Albert Hajnal & Duy Tran & Zsombor Szabó & Andrea Albert & Karen Safaryan & Michael Einstein & Mauricio Vallejo Martelo & Pierre-Olivier Polack & Peyman Golshani & Gergő Orbán, 2024. "Shifts in attention drive context-dependent subspace encoding in anterior cingulate cortex in mice during decision making," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Gabriele Di Antonio & Sofia Raglio & Maurizio Mattia, 2024. "A geometrical solution underlies general neural principle for serial ordering," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. Shinichiro Kira & Houman Safaai & Ari S. Morcos & Stefano Panzeri & Christopher D. Harvey, 2023. "A distributed and efficient population code of mixed selectivity neurons for flexible navigation decisions," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    20. Wei-Long Zheng & Zhongxuan Wu & Ali Hummos & Guangyu Robert Yang & Michael M. Halassa, 2024. "Rapid context inference in a thalamocortical model using recurrent neural networks," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-023-44571-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.