IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-42519-5.html
   My bibliography  Save this article

Early selection of task-relevant features through population gating

Author

Listed:
  • Joao Barbosa

    (INSERM U960, Ecole Normale Superieure - PSL Research University)

  • Rémi Proville

    (Tailored Data Solutions)

  • Chris C. Rodgers

    (Emory University)

  • Michael R. DeWeese

    (University of California)

  • Srdjan Ostojic

    (INSERM U960, Ecole Normale Superieure - PSL Research University)

  • Yves Boubenec

    (École Normale Supérieure PSL Research University, CNRS)

Abstract

Brains can gracefully weed out irrelevant stimuli to guide behavior. This feat is believed to rely on a progressive selection of task-relevant stimuli across the cortical hierarchy, but the specific across-area interactions enabling stimulus selection are still unclear. Here, we propose that population gating, occurring within primary auditory cortex (A1) but controlled by top-down inputs from prelimbic region of medial prefrontal cortex (mPFC), can support across-area stimulus selection. Examining single-unit activity recorded while rats performed an auditory context-dependent task, we found that A1 encoded relevant and irrelevant stimuli along a common dimension of its neural space. Yet, the relevant stimulus encoding was enhanced along an extra dimension. In turn, mPFC encoded only the stimulus relevant to the ongoing context. To identify candidate mechanisms for stimulus selection within A1, we reverse-engineered low-rank RNNs trained on a similar task. Our analyses predicted that two context-modulated neural populations gated their preferred stimulus in opposite contexts, which we confirmed in further analyses of A1. Finally, we show in a two-region RNN how population gating within A1 could be controlled by top-down inputs from PFC, enabling flexible across-area communication despite fixed inter-areal connectivity.

Suggested Citation

  • Joao Barbosa & Rémi Proville & Chris C. Rodgers & Michael R. DeWeese & Srdjan Ostojic & Yves Boubenec, 2023. "Early selection of task-relevant features through population gating," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42519-5
    DOI: 10.1038/s41467-023-42519-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-42519-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-42519-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Matthew F. Panichello & Timothy J. Buschman, 2021. "Shared mechanisms underlie the control of working memory and attention," Nature, Nature, vol. 592(7855), pages 601-605, April.
    2. Juan A. Gallego & Matthew G. Perich & Stephanie N. Naufel & Christian Ethier & Sara A. Solla & Lee E. Miller, 2018. "Cortical population activity within a preserved neural manifold underlies multiple motor behaviors," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    3. Valerio Mante & David Sussillo & Krishna V. Shenoy & William T. Newsome, 2013. "Context-dependent computation by recurrent dynamics in prefrontal cortex," Nature, Nature, vol. 503(7474), pages 78-84, November.
    4. Sophie Bagur & Martin Averseng & Diego Elgueda & Stephen David & Jonathan Fritz & Pingbo Yin & Shihab Shamma & Yves Boubenec & Srdjan Ostojic, 2018. "Go/No-Go task engagement enhances population representation of target stimuli in primary auditory cortex," Nature Communications, Nature, vol. 9(1), pages 1-16, December.
    5. Daniel Jercog & Nanci Winke & Kibong Sung & Mario Martin Fernandez & Claire Francioni & Domitille Rajot & Julien Courtin & Fabrice Chaudun & Pablo E. Jercog & Stephane Valerio & Cyril Herry, 2021. "Dynamical prefrontal population coding during defensive behaviours," Nature, Nature, vol. 595(7869), pages 690-694, July.
    6. Junya Hirokawa & Alexander Vaughan & Paul Masset & Torben Ott & Adam Kepecs, 2019. "Frontal cortex neuron types categorically encode single decision variables," Nature, Nature, vol. 576(7787), pages 446-451, December.
    7. Sandra Reinert & Mark Hübener & Tobias Bonhoeffer & Pieter M. Goltstein, 2021. "Mouse prefrontal cortex represents learned rules for categorization," Nature, Nature, vol. 593(7859), pages 411-417, May.
    8. João D. Semedo & Anna I. Jasper & Amin Zandvakili & Aravind Krishna & Amir Aschner & Christian K. Machens & Adam Kohn & Byron M. Yu, 2022. "Feedforward and feedback interactions between visual cortical areas use different population activity patterns," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei-Long Zheng & Zhongxuan Wu & Ali Hummos & Guangyu Robert Yang & Michael M. Halassa, 2024. "Rapid context inference in a thalamocortical model using recurrent neural networks," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    2. Jan Weber & Anne-Kristin Solbakk & Alejandro O. Blenkmann & Anais Llorens & Ingrid Funderud & Sabine Leske & Pål Gunnar Larsson & Jugoslav Ivanovic & Robert T. Knight & Tor Endestad & Randolph F. Helf, 2024. "Ramping dynamics and theta oscillations reflect dissociable signatures during rule-guided human behavior," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    3. Nagaraj R. Mahajan & Shreesh P. Mysore, 2022. "Donut-like organization of inhibition underlies categorical neural responses in the midbrain," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    4. Shinichiro Kira & Houman Safaai & Ari S. Morcos & Stefano Panzeri & Christopher D. Harvey, 2023. "A distributed and efficient population code of mixed selectivity neurons for flexible navigation decisions," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    5. Yihan Wang & Qian-Quan Sun, 2024. "A prefrontal motor circuit initiates persistent movement," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Daniel Pacheco-Estefan & Marie-Christin Fellner & Lukas Kunz & Hui Zhang & Peter Reinacher & Charlotte Roy & Armin Brandt & Andreas Schulze-Bonhage & Linglin Yang & Shuang Wang & Jing Liu & Gui Xue & , 2024. "Maintenance and transformation of representational formats during working memory prioritization," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    7. Shusen Pu & Wenhao Dang & Xue-Lian Qi & Christos Constantinidis, 2024. "Prefrontal neuronal dynamics in the absence of task execution," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    8. Ege Altan & Sara A Solla & Lee E Miller & Eric J Perreault, 2021. "Estimating the dimensionality of the manifold underlying multi-electrode neural recordings," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-23, November.
    9. Atsushi Kikumoto & Apoorva Bhandari & Kazuhisa Shibata & David Badre, 2024. "A transient high-dimensional geometry affords stable conjunctive subspaces for efficient action selection," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Huee Ru Chong & Yadollah Ranjbar-Slamloo & Malcolm Zheng Hao Ho & Xuan Ouyang & Tsukasa Kamigaki, 2023. "Functional alterations of the prefrontal circuit underlying cognitive aging in mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    11. Georgia Koppe & Hazem Toutounji & Peter Kirsch & Stefanie Lis & Daniel Durstewitz, 2019. "Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-35, August.
    12. Wenqi Chen & Jiejunyi Liang & Qiyun Wu & Yunyun Han, 2024. "Anterior cingulate cortex provides the neural substrates for feedback-driven iteration of decision and value representation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Sara Borgomaneri & Marco Zanon & Paolo Di Luzio & Antonio Cataneo & Giorgio Arcara & Vincenzo Romei & Marco Tamietto & Alessio Avenanti, 2023. "Increasing associative plasticity in temporo-occipital back-projections improves visual perception of emotions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Pierre O. Boucher & Tian Wang & Laura Carceroni & Gary Kane & Krishna V. Shenoy & Chandramouli Chandrasekaran, 2023. "Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    15. Rishi Rajalingham & Aída Piccato & Mehrdad Jazayeri, 2022. "Recurrent neural networks with explicit representation of dynamic latent variables can mimic behavioral patterns in a physical inference task," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    16. Wan-Yu Shih & Hsiang-Yu Yu & Cheng-Chia Lee & Chien-Chen Chou & Chien Chen & Paul W. Glimcher & Shih-Wei Wu, 2023. "Electrophysiological population dynamics reveal context dependencies during decision making in human frontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    17. Masakazu Agetsuma & Issei Sato & Yasuhiro R. Tanaka & Luis Carrillo-Reid & Atsushi Kasai & Atsushi Noritake & Yoshiyuki Arai & Miki Yoshitomo & Takashi Inagaki & Hiroshi Yukawa & Hitoshi Hashimoto & J, 2023. "Activity-dependent organization of prefrontal hub-networks for associative learning and signal transformation," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    18. Wenyi Zhang & Yang Xie & Tianming Yang, 2022. "Reward salience but not spatial attention dominates the value representation in the orbitofrontal cortex," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    19. Nir Even-Chen & Blue Sheffer & Saurabh Vyas & Stephen I Ryu & Krishna V Shenoy, 2019. "Structure and variability of delay activity in premotor cortex," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-17, February.
    20. Mehrabbeik, Mahtab & Shams-Ahmar, Mohammad & Levine, Alexandra T. & Jafari, Sajad & Merrikhi, Yaser, 2022. "Distinctive nonlinear dimensionality of neural spiking activity in extrastriate cortex during spatial working memory; a Higuchi fractal analysis," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-42519-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.