IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-024-54688-y.html
   My bibliography  Save this article

Dynamic tracking of objects in the macaque dorsomedial frontal cortex

Author

Listed:
  • Rishi Rajalingham

    (Massachusetts Institute of Technology
    Meta; 390 9th Ave)

  • Hansem Sohn

    (Institute for Basic Science (IBS)
    Sungkyunkwan University (SKKU))

  • Mehrdad Jazayeri

    (Massachusetts Institute of Technology
    Cambridge
    Massachusetts Institute of Technology)

Abstract

A central tenet of cognitive neuroscience is that humans build an internal model of the external world and use mental simulation of the model to perform physical inferences. Decades of human experiments have shown that behaviors in many physical reasoning tasks are consistent with predictions from the mental simulation theory. However, evidence for the defining feature of mental simulation – that neural population dynamics reflect simulations of physical states in the environment – is limited. We test the mental simulation hypothesis by combining a naturalistic ball-interception task, large-scale electrophysiology in non-human primates, and recurrent neural network modeling. We find that neurons in the monkeys’ dorsomedial frontal cortex (DMFC) represent task-relevant information about the ball position in a multiplexed fashion. At a population level, the activity pattern in DMFC comprises a low-dimensional neural embedding that tracks the ball both when it is visible and invisible, serving as a neural substrate for mental simulation. A systematic comparison of different classes of task-optimized RNN models with the DMFC data provides further evidence supporting the mental simulation hypothesis. Our findings provide evidence that neural dynamics in the frontal cortex are consistent with internal simulation of external states in the environment.

Suggested Citation

  • Rishi Rajalingham & Hansem Sohn & Mehrdad Jazayeri, 2025. "Dynamic tracking of objects in the macaque dorsomedial frontal cortex," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-54688-y
    DOI: 10.1038/s41467-024-54688-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-54688-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-54688-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-024-54688-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.