IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-34084-0.html
   My bibliography  Save this article

Reward salience but not spatial attention dominates the value representation in the orbitofrontal cortex

Author

Listed:
  • Wenyi Zhang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yang Xie

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Tianming Yang

    (Chinese Academy of Sciences)

Abstract

The orbitofrontal cortex (OFC) encodes value and plays a key role in value-based decision-making. However, the attentional modulation of the OFC’s value encoding is poorly understood. We trained two monkeys to detect a luminance change at a cued location between a pair of visual stimuli, which were over-trained pictures associated with different amounts of juice reward and, thus, different reward salience. Both the monkeys’ behavior and the dorsolateral prefrontal cortex neuronal activities indicated that the monkeys actively directed their spatial attention toward the cued stimulus during the task. However, the OFC’s neuronal responses were dominated by the stimulus with higher reward salience and encoded its value. The value of the less salient stimulus was only weakly represented regardless of spatial attention. The results demonstrate that reward and spatial attention are distinctly represented in the prefrontal cortex and the OFC maintains a stable representation of reward salience minimally affected by attention.

Suggested Citation

  • Wenyi Zhang & Yang Xie & Tianming Yang, 2022. "Reward salience but not spatial attention dominates the value representation in the orbitofrontal cortex," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34084-0
    DOI: 10.1038/s41467-022-34084-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-34084-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-34084-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mattia Rigotti & Omri Barak & Melissa R. Warden & Xiao-Jing Wang & Nathaniel D. Daw & Earl K. Miller & Stefano Fusi, 2013. "The importance of mixed selectivity in complex cognitive tasks," Nature, Nature, vol. 497(7451), pages 585-590, May.
    2. Sébastien Ballesta & Weikang Shi & Katherine E. Conen & Camillo Padoa-Schioppa, 2020. "Values encoded in orbitofrontal cortex are causally related to economic choices," Nature, Nature, vol. 588(7838), pages 450-453, December.
    3. Valerio Mante & David Sussillo & Krishna V. Shenoy & William T. Newsome, 2013. "Context-dependent computation by recurrent dynamics in prefrontal cortex," Nature, Nature, vol. 503(7474), pages 78-84, November.
    4. Camillo Padoa-Schioppa & John A. Assad, 2006. "Neurons in the orbitofrontal cortex encode economic value," Nature, Nature, vol. 441(7090), pages 223-226, May.
    5. Ramon Nogueira & Juan M. Abolafia & Jan Drugowitsch & Emili Balaguer-Ballester & Maria V. Sanchez-Vives & Rubén Moreno-Bote, 2017. "Lateral orbitofrontal cortex anticipates choices and integrates prior with current information," Nature Communications, Nature, vol. 8(1), pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Demetrio Ferro & Tyler Cash-Padgett & Maya Zhe Wang & Benjamin Y. Hayden & Rubén Moreno-Bote, 2024. "Gaze-centered gating, reactivation, and reevaluation of economic value in orbitofrontal cortex," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nir Moneta & Mona M. Garvert & Hauke R. Heekeren & Nicolas W. Schuck, 2023. "Task state representations in vmPFC mediate relevant and irrelevant value signals and their behavioral influence," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    2. Kiyohito Iigaya & Sanghyun Yi & Iman A. Wahle & Sandy Tanwisuth & Logan Cross & John P. O’Doherty, 2023. "Neural mechanisms underlying the hierarchical construction of perceived aesthetic value," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Arno Onken & Jue Xie & Stefano Panzeri & Camillo Padoa-Schioppa, 2019. "Categorical encoding of decision variables in orbitofrontal cortex," PLOS Computational Biology, Public Library of Science, vol. 15(10), pages 1-27, October.
    4. Demetrio Ferro & Tyler Cash-Padgett & Maya Zhe Wang & Benjamin Y. Hayden & Rubén Moreno-Bote, 2024. "Gaze-centered gating, reactivation, and reevaluation of economic value in orbitofrontal cortex," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Jan Weber & Anne-Kristin Solbakk & Alejandro O. Blenkmann & Anais Llorens & Ingrid Funderud & Sabine Leske & Pål Gunnar Larsson & Jugoslav Ivanovic & Robert T. Knight & Tor Endestad & Randolph F. Helf, 2024. "Ramping dynamics and theta oscillations reflect dissociable signatures during rule-guided human behavior," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Pierre O. Boucher & Tian Wang & Laura Carceroni & Gary Kane & Krishna V. Shenoy & Chandramouli Chandrasekaran, 2023. "Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    7. Wan-Yu Shih & Hsiang-Yu Yu & Cheng-Chia Lee & Chien-Chen Chou & Chien Chen & Paul W. Glimcher & Shih-Wei Wu, 2023. "Electrophysiological population dynamics reveal context dependencies during decision making in human frontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    8. Zhewei Zhang & Chaoqun Yin & Tianming Yang, 2022. "Evidence accumulation occurs locally in the parietal cortex," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Javier G. Orlandi & Mohammad Abdolrahmani & Ryo Aoki & Dmitry R. Lyamzin & Andrea Benucci, 2023. "Distributed context-dependent choice information in mouse posterior cortex," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    10. Linda Q. Yu & Jason Dana & Joseph W. Kable, 2022. "Individuals with ventromedial frontal damage display unstable but transitive preferences during decision making," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    11. Sébastien Ballesta & Weikang Shi & Camillo Padoa-Schioppa, 2022. "Orbitofrontal cortex contributes to the comparison of values underlying economic choices," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    12. Huanyuan Zhou & KongFatt Wong-Lin & Da-Hui Wang, 2018. "Parallel Excitatory and Inhibitory Neural Circuit Pathways Underlie Reward-Based Phasic Neural Responses," Complexity, Hindawi, vol. 2018, pages 1-20, April.
    13. Benjamin R Cowley & Matthew A Smith & Adam Kohn & Byron M Yu, 2016. "Stimulus-Driven Population Activity Patterns in Macaque Primary Visual Cortex," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-31, December.
    14. Takuya Ito & Guangyu Robert Yang & Patryk Laurent & Douglas H. Schultz & Michael W. Cole, 2022. "Constructing neural network models from brain data reveals representational transformations linked to adaptive behavior," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    15. Katarzyna Jurewicz & Brianna J. Sleezer & Priyanka S. Mehta & Benjamin Y. Hayden & R. Becket Ebitz, 2024. "Irrational choices via a curvilinear representational geometry for value," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Nagaraj R. Mahajan & Shreesh P. Mysore, 2022. "Donut-like organization of inhibition underlies categorical neural responses in the midbrain," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    17. Noel Federman & Sebastián A. Romano & Macarena Amigo-Duran & Lucca Salomon & Antonia Marin-Burgin, 2024. "Acquisition of non-olfactory encoding improves odour discrimination in olfactory cortex," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    18. Daniel Durstewitz, 2017. "A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements," PLOS Computational Biology, Public Library of Science, vol. 13(6), pages 1-33, June.
    19. Kaushik J. Lakshminarasimhan & Eric Avila & Xaq Pitkow & Dora E. Angelaki, 2023. "Dynamical latent state computation in the male macaque posterior parietal cortex," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    20. J. L. Amengual & F. Di Bello & S. Ben Hadj Hassen & Suliann Ben Hamed, 2022. "Distractibility and impulsivity neural states are distinct from selective attention and modulate the implementation of spatial attention," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-34084-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.