IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005896.html
   My bibliography  Save this article

Clustering gene expression time series data using an infinite Gaussian process mixture model

Author

Listed:
  • Ian C McDowell
  • Dinesh Manandhar
  • Christopher M Vockley
  • Amy K Schmid
  • Timothy E Reddy
  • Barbara E Engelhardt

Abstract

Transcriptome-wide time series expression profiling is used to characterize the cellular response to environmental perturbations. The first step to analyzing transcriptional response data is often to cluster genes with similar responses. Here, we present a nonparametric model-based method, Dirichlet process Gaussian process mixture model (DPGP), which jointly models data clusters with a Dirichlet process and temporal dependencies with Gaussian processes. We demonstrate the accuracy of DPGP in comparison to state-of-the-art approaches using hundreds of simulated data sets. To further test our method, we apply DPGP to published microarray data from a microbial model organism exposed to stress and to novel RNA-seq data from a human cell line exposed to the glucocorticoid dexamethasone. We validate our clusters by examining local transcription factor binding and histone modifications. Our results demonstrate that jointly modeling cluster number and temporal dependencies can reveal shared regulatory mechanisms. DPGP software is freely available online at https://github.com/PrincetonUniversity/DP_GP_cluster.Author summary: Transcriptome-wide measurement of gene expression dynamics can reveal regulatory mechanisms that control how cells respond to changes in the environment. Such measurements may identify hundreds to thousands of responsive genes. Clustering genes with similar dynamics reveals a smaller set of response types that can then be explored and analyzed for distinct functions. Two challenges in clustering time series gene expression data are selecting the number of clusters and modeling dependencies in gene expression levels between time points. We present a methodology, DPGP, in which a Dirichlet process clusters the trajectories of gene expression levels across time, where the trajectories are modeled using a Gaussian process. We demonstrate the performance of DPGP compared to state-of-the-art time series clustering methods across a variety of simulated data. We apply DPGP to published microbial expression data and find that it recapitulates known expression regulation with minimal user input. We then use DPGP to identify novel human gene expression responses to the widely-prescribed synthetic glucocorticoid hormone dexamethasone. We find distinct clusters of responsive transcripts that are validated by considering between-cluster differences in transcription factor binding and histone modifications. These results demonstrate that DPGP can be used for exploratory data analysis of gene expression time series to reveal novel insights into biomedically important gene regulatory processes.

Suggested Citation

  • Ian C McDowell & Dinesh Manandhar & Christopher M Vockley & Amy K Schmid & Timothy E Reddy & Barbara E Engelhardt, 2018. "Clustering gene expression time series data using an infinite Gaussian process mixture model," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-27, January.
  • Handle: RePEc:plo:pcbi00:1005896
    DOI: 10.1371/journal.pcbi.1005896
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005896
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005896&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005896?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Alvaro Rada-Iglesias & Ruchi Bajpai & Tomek Swigut & Samantha A. Brugmann & Ryan A. Flynn & Joanna Wysocka, 2011. "A unique chromatin signature uncovers early developmental enhancers in humans," Nature, Nature, vol. 470(7333), pages 279-283, February.
    2. Nathaniel D. Heintzman & Gary C. Hon & R. David Hawkins & Pouya Kheradpour & Alexander Stark & Lindsey F. Harp & Zhen Ye & Leonard K. Lee & Rhona K. Stuart & Christina W. Ching & Keith A. Ching & Jess, 2009. "Histone modifications at human enhancers reflect global cell-type-specific gene expression," Nature, Nature, vol. 459(7243), pages 108-112, May.
    3. Kai-Florian Storch & Ovidiu Lipan & Igor Leykin & N. Viswanathan & Fred C. Davis & Wing H. Wong & Charles J. Weitz, 2002. "Extensive and divergent circadian gene expression in liver and heart," Nature, Nature, vol. 417(6884), pages 78-83, May.
    4. Heard, Nicholas A. & Holmes, Christopher C. & Stephens, David A., 2006. "A Quantitative Study of Gene Regulation Involved in the Immune Response of Anopheline Mosquitoes: An Application of Bayesian Hierarchical Clustering of Curves," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 18-29, March.
    5. Dunson, David B. & Herring, Amy H. & Siega-Riz, Anna Maria, 2008. "Bayesian Inference on Changes in Response Densities Over Predictor Clusters," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1508-1517.
    6. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    7. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qidi Peng & Nan Rao & Ran Zhao, 2019. "Some Developments in Clustering Analysis on Stochastic Processes," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 9(3), pages 72-77, April.
    2. Giuseppe Ciaburro & Gino Iannace, 2021. "Machine Learning-Based Algorithms to Knowledge Extraction from Time Series Data: A Review," Data, MDPI, vol. 6(6), pages 1-30, May.
    3. Mijeong Kim & Yu Jin Jang & Muyoung Lee & Qingqing Guo & Albert J. Son & Nikita A. Kakkad & Abigail B. Roland & Bum-Kyu Lee & Jonghwan Kim, 2024. "The transcriptional regulatory network modulating human trophoblast stem cells to extravillous trophoblast differentiation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    4. Linghao Zhang & Bo Pang & Haitao Tang & Hongjun Wang & Chongshou Li & Zhipeng Luo, 2022. "Pairwise Constraints Multidimensional Scaling for Discriminative Feature Learning," Mathematics, MDPI, vol. 10(21), pages 1-16, November.
    5. Jacobovic Royi, 2018. "On the relation between the true and sample correlations under Bayesian modelling of gene expression datasets," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 17(4), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    3. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    4. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    5. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    6. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    7. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    8. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    9. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    10. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    11. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    12. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    13. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.
    14. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    15. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    16. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    17. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    18. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    19. Jie Jian & Peijun Sang & Mu Zhu, 2024. "Two Gaussian Regularization Methods for Time-Varying Networks," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 853-873, December.
    20. Qianyun Li & Runmin Shi & Faming Liang, 2019. "Drug sensitivity prediction with high-dimensional mixture regression," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-18, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.