IDEAS home Printed from https://ideas.repec.org/a/inm/ormoor/v43y2018i3p919-948.html
   My bibliography  Save this article

Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods

Author

Listed:
  • Dmitriy Drusvyatskiy

    (Department of Mathematics, University of Washington, Seattle, Washington 98195)

  • Adrian S. Lewis

    (School of Operations Research and Information Engineering, Cornell University, Ithaca, New York 14853)

Abstract

The proximal gradient algorithm for minimizing the sum of a smooth and nonsmooth convex function often converges linearly even without strong convexity. One common reason is that a multiple of the step length at each iteration may linearly bound the “error”—the distance to the solution set. We explain the observed linear convergence intuitively by proving the equivalence of such an error bound to a natural quadratic growth condition. Our approach generalizes to linear and quadratic convergence analysis for proximal methods (of Gauss-Newton type) for minimizing compositions of nonsmooth functions with smooth mappings. We observe incidentally that short step-lengths in the algorithm indicate near-stationarity, suggesting a reliable termination criterion.

Suggested Citation

  • Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
  • Handle: RePEc:inm:ormoor:v:43:y:2018:i:3:p:919-948
    DOI: 10.1287/moor.2017.0889
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/moor.2017.0889
    Download Restriction: no

    File URL: https://libkey.io/10.1287/moor.2017.0889?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhenji Zhang & Runtong Zhang & Juliang Zhang (ed.), 2013. "Liss 2012," Springer Books, Springer, edition 127, number 978-3-642-32054-5, October.
    2. Zhi-Quan Luo & Paul Tseng, 1993. "On the Convergence Rate of Dual Ascent Methods for Linearly Constrained Convex Minimization," Mathematics of Operations Research, INFORMS, vol. 18(4), pages 846-867, November.
    3. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    4. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunier Bello-Cruz & Guoyin Li & Tran Thai An Nghia, 2022. "Quadratic Growth Conditions and Uniqueness of Optimal Solution to Lasso," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 167-190, July.
    2. Yunier Bello-Cruz & Guoyin Li & Tran T. A. Nghia, 2021. "On the Linear Convergence of Forward–Backward Splitting Method: Part I—Convergence Analysis," Journal of Optimization Theory and Applications, Springer, vol. 188(2), pages 378-401, February.
    3. Aleksandr Aravkin & Damek Davis, 2020. "Trimmed Statistical Estimation via Variance Reduction," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 292-322, February.
    4. Hui Zhang & Yu-Hong Dai & Lei Guo & Wei Peng, 2021. "Proximal-Like Incremental Aggregated Gradient Method with Linear Convergence Under Bregman Distance Growth Conditions," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 61-81, February.
    5. James V. Burke & Abraham Engle, 2020. "Strong Metric (Sub)regularity of Karush–Kuhn–Tucker Mappings for Piecewise Linear-Quadratic Convex-Composite Optimization and the Quadratic Convergence of Newton’s Method," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 1164-1192, August.
    6. Xiaoya Zhang & Wei Peng & Hui Zhang, 2022. "Inertial proximal incremental aggregated gradient method with linear convergence guarantees," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(2), pages 187-213, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    3. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    4. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    5. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    6. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    7. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    8. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    9. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    10. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    11. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    12. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.
    13. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    14. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    15. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    16. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    17. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    18. Qianyun Li & Runmin Shi & Faming Liang, 2019. "Drug sensitivity prediction with high-dimensional mixture regression," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-18, February.
    19. Jung, Yoon Mo & Whang, Joyce Jiyoung & Yun, Sangwoon, 2020. "Sparse probabilistic K-means," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    20. Changrong Yan & Dixin Zhang, 2013. "Sparse dimension reduction for survival data," Computational Statistics, Springer, vol. 28(4), pages 1835-1852, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormoor:v:43:y:2018:i:3:p:919-948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.