IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v16y2025i1d10.1038_s41467-025-56939-y.html
   My bibliography  Save this article

Time-resolved oxidative signal convergence across the algae–embryophyte divide

Author

Listed:
  • Tim P. Rieseberg

    (Department of Applied Bioinformatics)

  • Armin Dadras

    (Department of Applied Bioinformatics)

  • Tatyana Darienko

    (Department of Applied Bioinformatics
    Experimental Phycology and Culture Collection of Algae at Göttingen University (EPSAG))

  • Sina Post

    (Department of Plant Biochemistry)

  • Cornelia Herrfurth

    (Department of Plant Biochemistry
    Service Unit for Goettingen Metabolomics and Lipidomics)

  • Janine M. R. Fürst-Jansen

    (Department of Applied Bioinformatics)

  • Nils Hohnhorst

    (Department of Applied Bioinformatics)

  • Romy Petroll

    (Max Planck Institute for Biology Tübingen)

  • Stefan A. Rensing

    (Centre for Biological Signalling Studies (BIOSS))

  • Thomas Pröschold

    (Department of Applied Bioinformatics
    Research Department for Limnology)

  • Sophie de Vries

    (Department of Applied Bioinformatics
    Department of Applied Bioinformatics)

  • Iker Irisarri

    (Department of Applied Bioinformatics
    Campus Institute Data Science (CIDAS)
    Hamburg
    Department of Biodiversity and Evolutionary Biology)

  • Ivo Feussner

    (Department of Plant Biochemistry
    Service Unit for Goettingen Metabolomics and Lipidomics
    Department of Plant Biochemistry)

  • Jan de Vries

    (Department of Applied Bioinformatics
    Campus Institute Data Science (CIDAS)
    Department of Applied Bioinformatics)

Abstract

The earliest land plants faced a significant challenge in adapting to environmental stressors. Stress on land is unique in its dynamics, entailing swift and drastic changes in light and temperature. While we know that land plants share with their closest streptophyte algal relatives key components of the genetic makeup for dynamic stress responses, their concerted action is little understood. Here, we combine time-course stress profiling using photophysiology, transcriptomics on 2.7 Tbp of data, and metabolite profiling analyses on 270 distinct samples, to study stress kinetics across three 600-million-year-divergent streptophytes. Through co-expression analysis and Granger causal inference we predict a gene regulatory network that retraces a web of ancient signal convergences at ethylene signaling components, osmosensors, and chains of major kinases. These kinase hubs already integrated diverse environmental inputs since before the dawn of plants on land.

Suggested Citation

  • Tim P. Rieseberg & Armin Dadras & Tatyana Darienko & Sina Post & Cornelia Herrfurth & Janine M. R. Fürst-Jansen & Nils Hohnhorst & Romy Petroll & Stefan A. Rensing & Thomas Pröschold & Sophie de Vries, 2025. "Time-resolved oxidative signal convergence across the algae–embryophyte divide," Nature Communications, Nature, vol. 16(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56939-y
    DOI: 10.1038/s41467-025-56939-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-025-56939-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-025-56939-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yinping Jiao & Paul Peluso & Jinghua Shi & Tiffany Liang & Michelle C. Stitzer & Bo Wang & Michael S. Campbell & Joshua C. Stein & Xuehong Wei & Chen-Shan Chin & Katherine Guill & Michael Regulski & S, 2017. "Improved maize reference genome with single-molecule technologies," Nature, Nature, vol. 546(7659), pages 524-527, June.
    2. Kohji Murase & Yoshinori Hirano & Tai-ping Sun & Toshio Hakoshima, 2008. "Gibberellin-induced DELLA recognition by the gibberellin receptor GID1," Nature, Nature, vol. 456(7221), pages 459-463, November.
    3. Ben Scheres & Wim H. van der Putten, 2017. "The plant perceptron connects environment to development," Nature, Nature, vol. 543(7645), pages 337-345, March.
    4. Ian C McDowell & Dinesh Manandhar & Christopher M Vockley & Amy K Schmid & Timothy E Reddy & Barbara E Engelhardt, 2018. "Clustering gene expression time series data using an infinite Gaussian process mixture model," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-27, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qidi Peng & Nan Rao & Ran Zhao, 2019. "Some Developments in Clustering Analysis on Stochastic Processes," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 9(3), pages 72-77, April.
    2. Jia Zhou & Qinli Hu & Xinlong Xiao & Deqiang Yao & Shenghong Ge & Jin Ye & Haojie Li & Rujie Cai & Renyang Liu & Fangang Meng & Chao Wang & Jian-Kang Zhu & Mingguang Lei & Weiman Xing, 2021. "Mechanism of phosphate sensing and signaling revealed by rice SPX1-PHR2 complex structure," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Solomon Peter Wante & David W. M. Leung & Hossein Alizadeh, 2024. "Varying Tolerance to Diesel Toxicity Revealed by Growth Response Evaluation of Petunia grandiflora Shoot Lines Regenerated after Diesel Fuel Treatment," Agriculture, MDPI, vol. 14(9), pages 1-15, September.
    4. Linghao Zhang & Bo Pang & Haitao Tang & Hongjun Wang & Chongshou Li & Zhipeng Luo, 2022. "Pairwise Constraints Multidimensional Scaling for Discriminative Feature Learning," Mathematics, MDPI, vol. 10(21), pages 1-16, November.
    5. Yage Ding & Cristina Tous & Jaehoon Choi & Jingyao Chen & Wilson W. Wong, 2024. "Orthogonal inducible control of Cas13 circuits enables programmable RNA regulation in mammalian cells," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    6. Jacobovic Royi, 2018. "On the relation between the true and sample correlations under Bayesian modelling of gene expression datasets," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 17(4), pages 1-14, August.
    7. Yixue Bao & Qing Zhang & Jiangfeng Huang & Shengcheng Zhang & Wei Yao & Zehuai Yu & Zuhu Deng & Jiaxin Yu & Weilong Kong & Xikai Yu & Shan Lu & Yibin Wang & Ru Li & Yuhan Song & Chengwu Zou & Yuzhi Xu, 2024. "A chromosomal-scale genome assembly of modern cultivated hybrid sugarcane provides insights into origination and evolution," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Giuseppe Ciaburro & Gino Iannace, 2021. "Machine Learning-Based Algorithms to Knowledge Extraction from Time Series Data: A Review," Data, MDPI, vol. 6(6), pages 1-30, May.
    9. Mijeong Kim & Yu Jin Jang & Muyoung Lee & Qingqing Guo & Albert J. Son & Nikita A. Kakkad & Abigail B. Roland & Bum-Kyu Lee & Jonghwan Kim, 2024. "The transcriptional regulatory network modulating human trophoblast stem cells to extravillous trophoblast differentiation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    10. Zhibin Chen & Zhaogui Zhang & Huairen Zhang & Kai Li & Darun Cai & Li Zhao & Juan Liu & Huabang Chen, 2022. "A pair of non-Mendelian genes at the Ga2 locus confer unilateral cross-incompatibility in maize," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    11. Mohamed Mahameed & Pengli Wang & Shuai Xue & Martin Fussenegger, 2022. "Engineering receptors in the secretory pathway for orthogonal signalling control," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Yuxin Fu & Wenxin Xiao & Lang Tian & Liangxing Guo & Guangjin Ma & Chen Ji & Yongcai Huang & Haihai Wang & Xingguo Wu & Tao Yang & Jiechen Wang & Jirui Wang & Yongrui Wu & Wenqin Wang, 2023. "Spatial transcriptomics uncover sucrose post-phloem transport during maize kernel development," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    13. Feng Tong & Teng Wang & Na L. Gao & Ziying Liu & Kuiqing Cui & Yiqian Duan & Sicheng Wu & Yuhong Luo & Zhipeng Li & Chengjian Yang & Yixue Xu & Bo Lin & Liguo Yang & Alfredo Pauciullo & Deshun Shi & G, 2022. "The microbiome of the buffalo digestive tract," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Gabriel E. Rech & Santiago Radío & Sara Guirao-Rico & Laura Aguilera & Vivien Horvath & Llewellyn Green & Hannah Lindstadt & Véronique Jamilloux & Hadi Quesneville & Josefa González, 2022. "Population-scale long-read sequencing uncovers transposable elements associated with gene expression variation and adaptive signatures in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    15. Jessen V. Bredeson & Jessica B. Lyons & Ibukun O. Oniyinde & Nneka R. Okereke & Olufisayo Kolade & Ikenna Nnabue & Christian O. Nwadili & Eva Hřibová & Matthew Parker & Jeremiah Nwogha & Shengqiang Sh, 2022. "Chromosome evolution and the genetic basis of agronomically important traits in greater yam," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    16. Yibing Zeng & Julian Somers & Harrison S. Bell & Zuzana Vejlupkova & R. Kelly Dawe & John E. Fowler & Brad Nelms & Jonathan I. Gent, 2024. "Potent pollen gene regulation by DNA glycosylases in maize," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Xu Huang & Rodolfo Zentella & Jeongmoo Park & Larry Reser & Dina L. Bai & Mark M. Ross & Jeffrey Shabanowitz & Donald F. Hunt & Tai-ping Sun, 2024. "Phosphorylation activates master growth regulator DELLA by promoting histone H2A binding at chromatin in Arabidopsis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    18. Laís Régis Salvino & Heber Pimentel Gomes & Saulo de Tarso Marques Bezerra, 2022. "Design of a Control System Using an Artificial Neural Network to Optimize the Energy Efficiency of Water Distribution Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(8), pages 2779-2793, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:16:y:2025:i:1:d:10.1038_s41467-025-56939-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.