IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v470y2011i7333d10.1038_nature09692.html
   My bibliography  Save this article

A unique chromatin signature uncovers early developmental enhancers in humans

Author

Listed:
  • Alvaro Rada-Iglesias

    (Stanford University School of Medicine)

  • Ruchi Bajpai

    (Stanford University School of Medicine)

  • Tomek Swigut

    (Stanford University School of Medicine)

  • Samantha A. Brugmann

    (Stanford University School of Medicine)

  • Ryan A. Flynn

    (Stanford University School of Medicine)

  • Joanna Wysocka

    (Stanford University School of Medicine
    Stanford University School of Medicine)

Abstract

Early enhancers revealed Identifying the genomic regulatory sequences, such as enhancers, that control early embryonic development remains a difficult challenge. Profiling of histone modifications and chromatin regulators in human embryonic stem cells now reveals unique signatures that are used to identify more than 2,000 putative enhancers. These enhancers are either active in the embryonic stem cells or are associated with early developmental genes.

Suggested Citation

  • Alvaro Rada-Iglesias & Ruchi Bajpai & Tomek Swigut & Samantha A. Brugmann & Ryan A. Flynn & Joanna Wysocka, 2011. "A unique chromatin signature uncovers early developmental enhancers in humans," Nature, Nature, vol. 470(7333), pages 279-283, February.
  • Handle: RePEc:nat:nature:v:470:y:2011:i:7333:d:10.1038_nature09692
    DOI: 10.1038/nature09692
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature09692
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature09692?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu Wang & Jie Wu & Madeline Sramek & S. M. Bukola Obayomi & Peidong Gao & Yan Li & Aleksey V. Matveyenko & Zong Wei, 2024. "Heterogeneous enhancer states orchestrate β cell responses to metabolic stress," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    2. Victor Lopez Soriano & Alfredo Dueñas Rey & Rajarshi Mukherjee & Frauke Coppieters & Miriam Bauwens & Andy Willaert & Elfride De Baere, 2024. "Multi-omics analysis in human retina uncovers ultraconserved cis-regulatory elements at rare eye disease loci," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Samuel Abassah-Oppong & Matteo Zoia & Brandon J. Mannion & Raquel Rouco & Virginie Tissières & Cailyn H. Spurrell & Virginia Roland & Fabrice Darbellay & Anja Itum & Julie Gamart & Tabitha A. Festa-Da, 2024. "A gene desert required for regulatory control of pleiotropic Shox2 expression and embryonic survival," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    4. Marko Dunjić & Felix Jonas & Gilad Yaakov & Roye More & Yoav Mayshar & Yoach Rais & Ayelet-Hashahar Orenbuch & Saifeng Cheng & Naama Barkai & Yonatan Stelzer, 2023. "Histone exchange sensors reveal variant specific dynamics in mouse embryonic stem cells," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    5. Kosei Nagata & Hironori Hojo & Song Ho Chang & Hiroyuki Okada & Fumiko Yano & Ryota Chijimatsu & Yasunori Omata & Daisuke Mori & Yuma Makii & Manabu Kawata & Taizo Kaneko & Yasuhide Iwanaga & Hideki N, 2022. "Runx2 and Runx3 differentially regulate articular chondrocytes during surgically induced osteoarthritis development," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Marta Losa & Iros Barozzi & Marco Osterwalder & Viviana Hermosilla-Aguayo & Angela Morabito & Brandon H. Chacón & Peyman Zarrineh & Ausra Girdziusaite & Jean Denis Benazet & Jianjian Zhu & Susan Macke, 2023. "A spatio-temporally constrained gene regulatory network directed by PBX1/2 acquires limb patterning specificity via HAND2," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    7. Marco Luciani & Chiara Garsia & Stefano Beretta & Ingrid Cifola & Clelia Peano & Ivan Merelli & Luca Petiti & Annarita Miccio & Vasco Meneghini & Angela Gritti, 2024. "Human iPSC-derived neural stem cells displaying radial glia signature exhibit long-term safety in mice," Nature Communications, Nature, vol. 15(1), pages 1-24, December.
    8. Masaki Kikuchi & Satoshi Morita & Masatoshi Wakamori & Shin Sato & Tomomi Uchikubo-Kamo & Takehiro Suzuki & Naoshi Dohmae & Mikako Shirouzu & Takashi Umehara, 2023. "Epigenetic mechanisms to propagate histone acetylation by p300/CBP," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. B. Edginton-White & A. Maytum & S. G. Kellaway & D. K. Goode & P. Keane & I. Pagnuco & S. A. Assi & L. Ames & M. Clarke & P. N. Cockerill & B. Göttgens & J. B. Cazier & C. Bonifer, 2023. "A genome-wide relay of signalling-responsive enhancers drives hematopoietic specification," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    10. Fabrice Darbellay & Anna Ramisch & Lucille Lopez-Delisle & Michael Kosicki & Antonella Rauseo & Zahra Jouini & Axel Visel & Guillaume Andrey, 2024. "Pre-hypertrophic chondrogenic enhancer landscape of limb and axial skeleton development," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Yanting Luo & Jianlin He & Xiguang Xu & Ming-an Sun & Xiaowei Wu & Xuemei Lu & Hehuang Xie, 2018. "Integrative single-cell omics analyses reveal epigenetic heterogeneity in mouse embryonic stem cells," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-21, March.
    12. Milan Kumar Samanta & Srimonta Gayen & Clair Harris & Emily Maclary & Yumie Murata-Nakamura & Rebecca M. Malcore & Robert S. Porter & Patricia M. Garay & Christina N. Vallianatos & Paul B. Samollow & , 2022. "Activation of Xist by an evolutionarily conserved function of KDM5C demethylase," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    13. Nicholas T. Crump & Alastair L. Smith & Laura Godfrey & Ana M. Dopico-Fernandez & Nicholas Denny & Joe R. Harman & Joseph C. Hamley & Nicole E. Jackson & Catherine Chahrour & Simone Riva & Siobhan Ric, 2023. "MLL-AF4 cooperates with PAF1 and FACT to drive high-density enhancer interactions in leukemia," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    14. Renata Bordeira-Carriço & Joana Teixeira & Marta Duque & Mafalda Galhardo & Diogo Ribeiro & Rafael D. Acemel & Panos. N. Firbas & Juan J. Tena & Ana Eufrásio & Joana Marques & Fábio J. Ferreira & Telm, 2022. "Multidimensional chromatin profiling of zebrafish pancreas to uncover and investigate disease-relevant enhancers," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    15. Raquel Rouco & Olimpia Bompadre & Antonella Rauseo & Olivier Fazio & Rodrigue Peraldi & Fabrizio Thorel & Guillaume Andrey, 2021. "Cell-specific alterations in Pitx1 regulatory landscape activation caused by the loss of a single enhancer," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    16. Cheng Zeng & Jiwei Chen & Emmalee W. Cooke & Arijita Subuddhi & Eliana T. Roodman & Fei Xavier Chen & Kaixiang Cao, 2023. "Demethylase-independent roles of LSD1 in regulating enhancers and cell fate transition," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    17. Dongmei Wang & Haimin Li & Navdeep S. Chandel & Yali Dou & Rui Yi, 2023. "MOF-mediated histone H4 Lysine 16 acetylation governs mitochondrial and ciliary functions by controlling gene promoters," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    18. M S Vijayabaskar & Debbie K Goode & Nadine Obier & Monika Lichtinger & Amber M L Emmett & Fatin N Zainul Abidin & Nisar Shar & Rebecca Hannah & Salam A Assi & Michael Lie-A-Ling & Berthold Gottgens & , 2019. "Identification of gene specific cis-regulatory elements during differentiation of mouse embryonic stem cells: An integrative approach using high-throughput datasets," PLOS Computational Biology, Public Library of Science, vol. 15(11), pages 1-29, November.
    19. Michael S. Werner & Tobias Loschko & Thomas King & Shelley Reich & Tobias Theska & Mirita Franz-Wachtel & Boris Macek & Ralf J. Sommer, 2023. "Histone 4 lysine 5/12 acetylation enables developmental plasticity of Pristionchus mouth form," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Lasse K. Markussen & Elizabeth A. Rondini & Olivia Sveidahl Johansen & Jesper G. S. Madsen & Elahu G. Sustarsic & Ann-Britt Marcher & Jacob B. Hansen & Zachary Gerhart-Hines & James G. Granneman & Sus, 2022. "Lipolysis regulates major transcriptional programs in brown adipocytes," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    21. Chaitali Chakraborty & Itzel Nissen & Craig A. Vincent & Anna-Carin Hägglund & Andreas Hörnblad & Silvia Remeseiro, 2023. "Rewiring of the promoter-enhancer interactome and regulatory landscape in glioblastoma orchestrates gene expression underlying neurogliomal synaptic communication," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    22. Annkatrin Bressin & Olga Jasnovidova & Mirjam Arnold & Elisabeth Altendorfer & Filip Trajkovski & Thomas A. Kratz & Joanna E. Handzlik & Denes Hnisz & Andreas Mayer, 2023. "High-sensitive nascent transcript sequencing reveals BRD4-specific control of widespread enhancer and target gene transcription," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    23. Zia-Ur-Rehman & Muhammad Razzaq Athar & M. Mohsin Shahid & Malik Muhammad Faisal & Mareum Shehzadi, 2022. "Exploring The Serial Mediation Of Mobile App Engagement And Self Brand Connection In The Relationship Between Brand Experience And Loyalty Towards Brand," Bulletin of Business and Economics (BBE), Research Foundation for Humanity (RFH), vol. 11(2), pages 20-30, June.
    24. Ian C McDowell & Dinesh Manandhar & Christopher M Vockley & Amy K Schmid & Timothy E Reddy & Barbara E Engelhardt, 2018. "Clustering gene expression time series data using an infinite Gaussian process mixture model," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-27, January.
    25. Mattia Zaghi & Federica Banfi & Luca Massimino & Monica Volpin & Edoardo Bellini & Simone Brusco & Ivan Merelli & Cristiana Barone & Michela Bruni & Linda Bossini & Luigi Antonio Lamparelli & Laura Pi, 2023. "Balanced SET levels favor the correct enhancer repertoire during cell fate acquisition," Nature Communications, Nature, vol. 14(1), pages 1-21, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:470:y:2011:i:7333:d:10.1038_nature09692. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.