Specification Choices in Quantile Regression for Empirical Macroeconomics
Author
Abstract
Suggested Citation
DOI: 10.26509/frbc-wp-202225
Download full text from publisher
Other versions of this item:
- Carriero, Andrea & Clark, Todd & Marcellino, Massimiliano, 2024. "Specification Choices in Quantile Regression for Empirical Macroeconomics," CEPR Discussion Papers 18901, C.E.P.R. Discussion Papers.
References listed on IDEAS
- Cross, Jamie L. & Hou, Chenghan & Poon, Aubrey, 2020. "Macroeconomic forecasting with large Bayesian VARs: Global-local priors and the illusion of sparsity," International Journal of Forecasting, Elsevier, vol. 36(3), pages 899-915.
- Sebastiano Manzan, 2015. "Forecasting the Distribution of Economic Variables in a Data-Rich Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 144-164, January.
- West, Kenneth D, 1996.
"Asymptotic Inference about Predictive Ability,"
Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
- West, K.D., 1994. "Asymptotic Inference About Predictive Ability," Working papers 9417, Wisconsin Madison - Social Systems.
- Kenneth D. West, 1994. "Asymptotic Inference About Predictive Ability," Macroeconomics 9410002, University Library of Munich, Germany.
- Aaron J. Amburgey & Michael W. McCracken, 2023.
"On the real‐time predictive content of financial condition indices for growth,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(2), pages 137-163, March.
- Aaron Amburgey & Michael W. McCracken, 2022. "On the Real-Time Predictive Content of Financial Conditions Indices for Growth," Working Papers 2022-003, Federal Reserve Bank of St. Louis, revised 03 Jun 2022.
- Jon Faust & Simon Gilchrist & Jonathan H. Wright & Egon Zakrajšsek, 2013.
"Credit Spreads as Predictors of Real-Time Economic Activity: A Bayesian Model-Averaging Approach,"
The Review of Economics and Statistics, MIT Press, vol. 95(5), pages 1501-1519, December.
- Jon Faust & Simon Gilchrist & Jonathan H. Wright & Egon Zakrajsek, 2011. "Credit Spreads as Predictors of Real-Time Economic Activity: A Bayesian Model-Averaging Approach," NBER Working Papers 16725, National Bureau of Economic Research, Inc.
- Jon Faust & Simon Gilchrist & Jonathan H. Wright & Egon Zakrajšek, 2012. "Credit spreads as predictors of real-time economic activity: a Bayesian Model-Averaging approach," Finance and Economics Discussion Series 2012-77, Board of Governors of the Federal Reserve System (U.S.).
- Chan, Joshua C.C., 2021.
"Minnesota-type adaptive hierarchical priors for large Bayesian VARs,"
International Journal of Forecasting, Elsevier, vol. 37(3), pages 1212-1226.
- Joshua C. C. Chan, 2019. "Minnesota-type adaptive hierarchical priors for large Bayesian VARs," CAMA Working Papers 2019-61, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Tilmann Gneiting & Roopesh Ranjan, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 411-422, July.
- Korobilis, Dimitris, 2017. "Quantile regression forecasts of inflation under model uncertainty," International Journal of Forecasting, Elsevier, vol. 33(1), pages 11-20.
- Bayer, Sebastian, 2018. "Combining Value-at-Risk forecasts using penalized quantile regressions," Econometrics and Statistics, Elsevier, vol. 8(C), pages 56-77.
- Khare, Kshitij & Hobert, James P., 2012. "Geometric ergodicity of the Gibbs sampler for Bayesian quantile regression," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 108-116.
- Manzan, Sebastiano & Zerom, Dawit, 2013.
"Are macroeconomic variables useful for forecasting the distribution of U.S. inflation?,"
International Journal of Forecasting, Elsevier, vol. 29(3), pages 469-478.
- Manzan, Sebastiano & Zerom, Dawit, 2009. "Are Macroeconomic Variables Useful for Forecasting the Distribution of U.S. Inflation?," MPRA Paper 14387, University Library of Munich, Germany.
- Tobias Adrian & Federico Grinberg & Nellie Liang & Sheheryar Malik & Jie Yu, 2022.
"The Term Structure of Growth-at-Risk,"
American Economic Journal: Macroeconomics, American Economic Association, vol. 14(3), pages 283-323, July.
- Adrian, Tobias & Liang, Nellie & Grinberg, Federico & Malik, Sheherya, 2018. "The Term Structure of Growth-at-Risk," CEPR Discussion Papers 13349, C.E.P.R. Discussion Papers.
- Mr. Tobias Adrian & Federico Grinberg & Nellie Liang & Sheheryar Malik, 2018. "The Term Structure of Growth-at-Risk," IMF Working Papers 2018/180, International Monetary Fund.
- Andrews, Donald W K & Monahan, J Christopher, 1992.
"An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator,"
Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
- Donald W.K. Andrews & Christopher J. Monahan, 1990. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Cowles Foundation Discussion Papers 942, Cowles Foundation for Research in Economics, Yale University.
- Giglio, Stefano & Kelly, Bryan & Pruitt, Seth, 2016.
"Systemic risk and the macroeconomy: An empirical evaluation,"
Journal of Financial Economics, Elsevier, vol. 119(3), pages 457-471.
- Stefano Giglio & Bryan T. Kelly & Seth Pruitt, 2015. "Systemic Risk and the Macroeconomy: An Empirical Evaluation," NBER Working Papers 20963, National Bureau of Economic Research, Inc.
- Wagner Piazza Gaglianone & Luiz Renato Lima, 2012.
"Constructing Density Forecasts from Quantile Regressions,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(8), pages 1589-1607, December.
- Wagner Piazza Gaglianone & Luiz Renato Lima, 2012. "Constructing Density Forecasts from Quantile Regressions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(8), pages 1589-1607, December.
- David Kohns & Tibor Szendrei, 2020. "Horseshoe Prior Bayesian Quantile Regression," Papers 2006.07655, arXiv.org, revised Mar 2021.
- Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
- Gneiting, Tilmann & Ranjan, Roopesh, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 411-422.
- Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jan Prüser & Florian Huber, 2024.
"Nonlinearities in macroeconomic tail risk through the lens of big data quantile regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 269-291, March.
- Jan Pruser & Florian Huber, 2023. "Nonlinearities in Macroeconomic Tail Risk through the Lens of Big Data Quantile Regressions," Papers 2301.13604, arXiv.org, revised Sep 2023.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2024.
"Capturing Macro‐Economic Tail Risks with Bayesian Vector Autoregressions,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 56(5), pages 1099-1127, August.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2020. "Capturing Macroeconomic Tail Risks with Bayesian Vector Autoregressions," Working Papers 20-02R, Federal Reserve Bank of Cleveland, revised 22 Sep 2020.
- Carriero, Andrea & Clark, Todd & Marcellino, Massimiliano, 2022. "Capturing Macroeconomic Tail Risks with Bayesian Vector Autoregressions," CEPR Discussion Papers 17512, C.E.P.R. Discussion Papers.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023.
"Tail Forecasting With Multivariate Bayesian Additive Regression Trees,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2021. "Tail Forecasting with Multivariate Bayesian Additive Regression Trees," Working Papers 21-08R, Federal Reserve Bank of Cleveland, revised 12 Jul 2022.
- Clark, Todd & Huber, Florian & Koop, Gary & Marcellino, Massimiliano & Pfarrhofer, Michael, 2022. "Tail Forecasting with Multivariate Bayesian Additive Regression Trees," CEPR Discussion Papers 17461, C.E.P.R. Discussion Papers.
- James Mitchell & Aubrey Poon & Dan Zhu, 2024.
"Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 790-812, August.
- James Mitchell & Aubrey Poon & Dan Zhu, 2022. "Constructing Density Forecasts from Quantile Regressions: Multimodality in Macro-Financial Dynamics," Working Papers 22-12R, Federal Reserve Bank of Cleveland, revised 11 Apr 2023.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2024.
"Investigating Growth-at-Risk Using a Multicountry Nonparametric Quantile Factor Model,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(4), pages 1302-1317, October.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2021. "Investigating Growth at Risk Using a Multi-country Non-parametric Quantile Factor Model," Papers 2110.03411, arXiv.org.
- Clark, Todd & Huber, Florian & Koop, Gary & Marcellino, Massimiliano & Pfarrhofer, Michael, 2023. "Investigating Growth-at-Risk Using a Multicountry Non-parametric Quantile Factor Model," CEPR Discussion Papers 18549, C.E.P.R. Discussion Papers.
- Todd Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2021. "Investigating Growth at Risk Using a Multi-country Non-parametric Quantile Factor Model," Working Papers 2307, University of Strathclyde Business School, Department of Economics.
- Pfarrhofer, Michael, 2022.
"Modeling tail risks of inflation using unobserved component quantile regressions,"
Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
- Michael Pfarrhofer, 2021. "Modeling tail risks of inflation using unobserved component quantile regressions," Papers 2103.03632, arXiv.org, revised Oct 2021.
- Andrea Carriero & Todd E. Clark & Marcellino Massimiliano, 2020. "Nowcasting Tail Risks to Economic Activity with Many Indicators," Working Papers 20-13R2, Federal Reserve Bank of Cleveland, revised 22 Sep 2020.
- Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024.
"Daily growth at risk: Financial or real drivers? The answer is not always the same,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
- Helena Chuliá & Ignacio Garrón & Jorge M. Uribe, 2022. ""Daily Growth at Risk: financial or real drivers? The answer is not always the same"," IREA Working Papers 202208, University of Barcelona, Research Institute of Applied Economics, revised Jun 2022.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022.
"Nowcasting tail risk to economic activity at a weekly frequency,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 843-866, August.
- Marcellino, Massimiliano & Clark, Todd & Carriero, Andrea, 2021. "Nowcasting Tail Risk to Economic Activity at a Weekly Frequency," CEPR Discussion Papers 16496, C.E.P.R. Discussion Papers.
- James Mitchell & Saeed Zaman, 2023. "The Distributional Predictive Content of Measures of Inflation Expectations," Working Papers 23-31, Federal Reserve Bank of Cleveland.
- Ferrara, Laurent & Mogliani, Matteo & Sahuc, Jean-Guillaume, 2022.
"High-frequency monitoring of growth at risk,"
International Journal of Forecasting, Elsevier, vol. 38(2), pages 582-595.
- Laurent Ferrara & Matteo Mogliani & Jean-Guillaume Sahuc, 2020. "High-frequency monitoring of growth-at-risk," CAMA Working Papers 2020-97, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Jean-Guillaume Sahuc & Matteo Mogliani & Laurent Ferrara, 2022. "High-frequency monitoring of growth at risk," Post-Print hal-03361425, HAL.
- David Kohns & Tibor Szendrei, 2021. "Decoupling Shrinkage and Selection for the Bayesian Quantile Regression," Papers 2107.08498, arXiv.org.
- Jan Prüser & Florian Huber, 2024.
"Nonlinearities in macroeconomic tail risk through the lens of big data quantile regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 269-291, March.
- Jan Pruser & Florian Huber, 2023. "Nonlinearities in Macroeconomic Tail Risk through the Lens of Big Data Quantile Regressions," Papers 2301.13604, arXiv.org, revised Sep 2023.
- Ignacio Garr'on & C. Vladimir Rodr'iguez-Caballero & Esther Ruiz, 2024. "International vulnerability of inflation," Papers 2410.20628, arXiv.org, revised Oct 2024.
- Alexandridis, Antonios K. & Apergis, Iraklis & Panopoulou, Ekaterini & Voukelatos, Nikolaos, 2023. "Equity premium prediction: The role of information from the options market," Journal of Financial Markets, Elsevier, vol. 64(C).
- Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
- Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2020. "Large Time-Varying Volatility Models for Electricity Prices," Working Papers No 05/2020, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
- Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
- Barbara Rossi, 2019.
"Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them,"
Economics Working Papers
1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Busetti, Fabio & Caivano, Michele & Delle Monache, Davide & Pacella, Claudia, 2021.
"The time-varying risk of Italian GDP,"
Economic Modelling, Elsevier, vol. 101(C).
- Fabio Busetti & Michele Caivano & Davide Delle Monache & Claudia Pacella, 2020. "The time-varying risk of Italian GDP," Temi di discussione (Economic working papers) 1288, Bank of Italy, Economic Research and International Relations Area.
- Tamás Kiss & Stepan Mazur & Hoang Nguyen & Pär Österholm, 2023.
"Modeling the relation between the US real economy and the corporate bond‐yield spread in Bayesian VARs with non‐Gaussian innovations,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 347-368, March.
- Kiss, Tamás & Mazur, Stepan & Nguyen, Hoang & Österholm, Pär, 2021. "Modelling the Relation between the US Real Economy and the Corporate Bond-Yield Spread in Bayesian VARs with non-Gaussian Disturbances," Working Papers 2021:9, Örebro University, School of Business.
More about this item
Keywords
Quantile regression; tail forecasting; shrinkage; Bayesian methods; quantile scores;All these keywords.
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- E17 - Macroeconomics and Monetary Economics - - General Aggregative Models - - - Forecasting and Simulation: Models and Applications
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
- F47 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - Forecasting and Simulation: Models and Applications
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ETS-2022-09-26 (Econometric Time Series)
- NEP-FOR-2022-09-26 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedcwq:94690. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: 4D Library (email available below). General contact details of provider: https://edirc.repec.org/data/frbclus.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.