IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v17y2018i4p14n1.html
   My bibliography  Save this article

On the relation between the true and sample correlations under Bayesian modelling of gene expression datasets

Author

Listed:
  • Jacobovic Royi

    (Statistics Department, The Hebrew University of Jerusalem, Jerusalem, Israel)

Abstract

The prediction of cancer prognosis and metastatic potential immediately after the initial diagnoses is a major challenge in current clinical research. The relevance of such a signature is clear, as it will free many patients from the agony and toxic side-effects associated with the adjuvant chemotherapy automatically and sometimes carelessly subscribed to them. Motivated by this issue, several previous works presented a Bayesian model which led to the following conclusion: thousands of samples are needed to generate a robust gene list for predicting outcome. This conclusion is based on existence of some statistical assumptions including asymptotic independence of sample correlations. The current work makes two main contributions: (1) It shows that while the assumptions of the Bayesian model discussed by previous papers seem to be non-restrictive, they are quite strong. To demonstrate this point, it is shown that some standard sparse and Gaussian models are not included in the set of models which are mathematically consistent with these assumptions. (2) It is shown that the empirical Bayes methodology which was applied in order to test the relevant assumptions does not detect severe violations and consequently an overestimation of the required sample size might be incurred. Finally, we suggest that under some regularity conditions it is possible that the current theoretical results can be used for development of a new method to test the asymptotic independence assumption.

Suggested Citation

  • Jacobovic Royi, 2018. "On the relation between the true and sample correlations under Bayesian modelling of gene expression datasets," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 17(4), pages 1-14, August.
  • Handle: RePEc:bpj:sagmbi:v:17:y:2018:i:4:p:14:n:1
    DOI: 10.1515/sagmb-2017-0068
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/sagmb-2017-0068
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/sagmb-2017-0068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rand Wilcox, 1978. "Some comments on selecting the best of several binomial populations or the bivariate normal population having the largest correlation coefficient," Psychometrika, Springer;The Psychometric Society, vol. 43(1), pages 127-128, March.
    2. Kenneth Levy, 1975. "Selecting the best population from among k binomial populations or the population with the largest correlation coefficient from among k bivariate normal populations," Psychometrika, Springer;The Psychometric Society, vol. 40(1), pages 121-122, March.
    3. Dobra, Adrian & Hans, Chris & Jones, Beatrix & Nevins, J.R.Joseph R. & Yao, Guang & West, Mike, 2004. "Sparse graphical models for exploring gene expression data," Journal of Multivariate Analysis, Elsevier, vol. 90(1), pages 196-212, July.
    4. Khursheed Alam, 1979. "Distribution of sample correlation coefficients," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 26(2), pages 327-330, June.
    5. Ian C McDowell & Dinesh Manandhar & Christopher M Vockley & Amy K Schmid & Timothy E Reddy & Barbara E Engelhardt, 2018. "Clustering gene expression time series data using an infinite Gaussian process mixture model," PLOS Computational Biology, Public Library of Science, vol. 14(1), pages 1-27, January.
    6. Carvalho, Carlos M. & Chang, Jeffrey & Lucas, Joseph E. & Nevins, Joseph R. & Wang, Quanli & West, Mike, 2008. "High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1438-1456.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    2. Sylvia Fruhwirth-Schnatter, 2023. "Generalized Cumulative Shrinkage Process Priors with Applications to Sparse Bayesian Factor Analysis," Papers 2303.00473, arXiv.org.
    3. Giraud Christophe & Huet Sylvie & Verzelen Nicolas, 2012. "Graph Selection with GGMselect," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-52, February.
    4. Paci, Lucia & Consonni, Guido, 2020. "Structural learning of contemporaneous dependencies in graphical VAR models," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    5. Aßmann, Christian & Boysen-Hogrefe, Jens & Pape, Markus, 2012. "The directional identification problem in Bayesian factor analysis: An ex-post approach," Kiel Working Papers 1799, Kiel Institute for the World Economy (IfW Kiel).
    6. Conti, Gabriella & Frühwirth-Schnatter, Sylvia & Heckman, James J. & Piatek, Rémi, 2014. "Bayesian exploratory factor analysis," Journal of Econometrics, Elsevier, vol. 183(1), pages 31-57.
    7. Wessel N. van Wieringen & Carel F. W. Peeters & Renee X. de Menezes & Mark A. van de Wiel, 2018. "Testing for pathway (in)activation by using Gaussian graphical models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1419-1436, November.
    8. Byol Kim & Song Liu & Mladen Kolar, 2021. "Two‐sample inference for high‐dimensional Markov networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 939-962, November.
    9. Agius Phaedra & Ying Yiming & Campbell Colin, 2009. "Bayesian Unsupervised Learning with Multiple Data Types," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-29, June.
    10. Wang, Hao, 2010. "Sparse seemingly unrelated regression modelling: Applications in finance and econometrics," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2866-2877, November.
    11. Hauber, Philipp, 2022. "Real-time nowcasting with sparse factor models," EconStor Preprints 251551, ZBW - Leibniz Information Centre for Economics.
    12. Mijeong Kim & Yu Jin Jang & Muyoung Lee & Qingqing Guo & Albert J. Son & Nikita A. Kakkad & Abigail B. Roland & Bum-Kyu Lee & Jonghwan Kim, 2024. "The transcriptional regulatory network modulating human trophoblast stem cells to extravillous trophoblast differentiation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    13. Daniel Felix Ahelegbey & Luis Carvalho & Eric D. Kolaczyk, 2020. "A Bayesian Covariance Graph And Latent Position Model For Multivariate Financial Time Series," DEM Working Papers Series 181, University of Pavia, Department of Economics and Management.
    14. Christine Peterson & Francesco C. Stingo & Marina Vannucci, 2015. "Bayesian Inference of Multiple Gaussian Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 159-174, March.
    15. Qidi Peng & Nan Rao & Ran Zhao, 2019. "Some Developments in Clustering Analysis on Stochastic Processes," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 9(3), pages 72-77, April.
    16. Adrian Quintero & Emmanuel Lesaffre & Geert Verbeke, 2024. "Bayesian Exploratory Factor Analysis via Gibbs Sampling," Journal of Educational and Behavioral Statistics, , vol. 49(1), pages 121-142, February.
    17. Aßmann, Christian & Boysen-Hogrefe, Jens & Pape, Markus, 2014. "Bayesian analysis of dynamic factor models: An ex-post approach towards the rotation problem," Kiel Working Papers 1902, Kiel Institute for the World Economy (IfW Kiel).
    18. Simon Beyeler & Sylvia Kaufmann, 2021. "Reduced‐form factor augmented VAR—Exploiting sparsity to include meaningful factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(7), pages 989-1012, November.
    19. Simon Freyaldenhoven, 2017. "A Generalized Factor Model with Local Factors," 2017 Papers pfr361, Job Market Papers.
    20. Rand Wilcox, 1978. "Some comments on selecting the best of several binomial populations or the bivariate normal population having the largest correlation coefficient," Psychometrika, Springer;The Psychometric Society, vol. 43(1), pages 127-128, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:17:y:2018:i:4:p:14:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.