IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006816.html
   My bibliography  Save this article

Inferring neural circuit structure from datasets of heterogeneous tuning curves

Author

Listed:
  • Takafumi Arakaki
  • G Barello
  • Yashar Ahmadian

Abstract

Tuning curves characterizing the response selectivities of biological neurons can exhibit large degrees of irregularity and diversity across neurons. Theoretical network models that feature heterogeneous cell populations or partially random connectivity also give rise to diverse tuning curves. Empirical tuning curve distributions can thus be utilized to make model-based inferences about the statistics of single-cell parameters and network connectivity. However, a general framework for such an inference or fitting procedure is lacking. We address this problem by proposing to view mechanistic network models as implicit generative models whose parameters can be optimized to fit the distribution of experimentally measured tuning curves. A major obstacle for fitting such models is that their likelihood function is not explicitly available or is highly intractable. Recent advances in machine learning provide ways for fitting implicit generative models without the need to evaluate the likelihood and its gradient. Generative Adversarial Networks (GANs) provide one such framework which has been successful in traditional machine learning tasks. We apply this approach in two separate experiments, showing how GANs can be used to fit commonly used mechanistic circuit models in theoretical neuroscience to datasets of tuning curves. This fitting procedure avoids the computationally expensive step of inferring latent variables, such as the biophysical parameters of, or synaptic connections between, particular recorded cells. Instead, it directly learns generalizable model parameters characterizing the network’s statistical structure such as the statistics of strength and spatial range of connections between different cell types. Another strength of this approach is that it fits the joint high-dimensional distribution of tuning curves, instead of matching a few summary statistics picked a priori by the user, resulting in a more accurate inference of circuit properties. More generally, this framework opens the door to direct model-based inference of circuit structure from data beyond single-cell tuning curves, such as simultaneous population recordings.Author summary: Neurons in the brain respond selectively to some stimuli or for some motor outputs, but not others. Even within a local brain network, neurons exhibit great diversity in their selectivity patterns. Recently, theorists have highlighted the computational importance of diverse neural selectivity. While many mechanistic circuit models are highly stylized and do not capture such diversity, models that feature biologically realistic heterogeneity in their structure do generate responses with diverse selectivities. However, traditionally only the average pattern of selectivity is matched between model and experimental data, and the distribution around the mean is ignored. Here, we provide a hitherto lacking methodology that exploits the full empirical and model distributions of response selectivites, in order to infer various structural circuit properties, such as the statistics of strength and spatial range of connections between different cell types. By applying this method to fit two circuit models from theoretical neuroscience to experimental or simulated data, we show that the proposed method can accurately and robustly infer circuit structure, and optimize a model to match the full range of observed response selectivities. Beyond neuroscience applications, the proposed framework can potentially serve to infer the structure of other biological networks from empirical functional data.

Suggested Citation

  • Takafumi Arakaki & G Barello & Yashar Ahmadian, 2019. "Inferring neural circuit structure from datasets of heterogeneous tuning curves," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-38, April.
  • Handle: RePEc:plo:pcbi00:1006816
    DOI: 10.1371/journal.pcbi.1006816
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006816
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006816&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006816?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Elad Schneidman & Michael J. Berry & Ronen Segev & William Bialek, 2006. "Weak pairwise correlations imply strongly correlated network states in a neural population," Nature, Nature, vol. 440(7087), pages 1007-1012, April.
    2. Dimitri Yatsenko & Krešimir Josić & Alexander S Ecker & Emmanouil Froudarakis & R James Cotton & Andreas S Tolias, 2015. "Improved Estimation and Interpretation of Correlations in Neural Circuits," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-28, March.
    3. Hagai Lalazar & L F Abbott & Eilon Vaadia, 2016. "Tuning Curves for Arm Posture Control in Motor Cortex Are Consistent with Random Connectivity," PLOS Computational Biology, Public Library of Science, vol. 12(5), pages 1-27, May.
    4. repec:dau:papers:123456789/5724 is not listed on IDEAS
    5. Hillel Adesnik & William Bruns & Hiroki Taniguchi & Z. Josh Huang & Massimo Scanziani, 2012. "A neural circuit for spatial summation in visual cortex," Nature, Nature, vol. 490(7419), pages 226-231, October.
    6. Erez Persi & David Hansel & Lionel Nowak & Pascal Barone & Carl van Vreeswijk, 2011. "Power-Law Input-Output Transfer Functions Explain the Contrast-Response and Tuning Properties of Neurons in Visual Cortex," PLOS Computational Biology, Public Library of Science, vol. 7(2), pages 1-21, February.
    7. Mattia Rigotti & Omri Barak & Melissa R. Warden & Xiao-Jing Wang & Nathaniel D. Daw & Earl K. Miller & Stefano Fusi, 2013. "The importance of mixed selectivity in complex cognitive tasks," Nature, Nature, vol. 497(7451), pages 585-590, May.
    8. Ho Ko & Sonja B. Hofer & Bruno Pichler & Katherine A. Buchanan & P. Jesper Sjöström & Thomas D. Mrsic-Flogel, 2011. "Functional specificity of local synaptic connections in neocortical networks," Nature, Nature, vol. 473(7345), pages 87-91, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher Ebsch & Robert Rosenbaum, 2018. "Imbalanced amplification: A mechanism of amplification and suppression from local imbalance of excitation and inhibition in cortical circuits," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-28, March.
    2. Jason S Prentice & Olivier Marre & Mark L Ioffe & Adrianna R Loback & Gašper Tkačik & Michael J Berry II, 2016. "Error-Robust Modes of the Retinal Population Code," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-32, November.
    3. Dimitri Yatsenko & Krešimir Josić & Alexander S Ecker & Emmanouil Froudarakis & R James Cotton & Andreas S Tolias, 2015. "Improved Estimation and Interpretation of Correlations in Neural Circuits," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-28, March.
    4. Guillaume Viejo & Thomas Cortier & Adrien Peyrache, 2018. "Brain-state invariant thalamo-cortical coordination revealed by non-linear encoders," PLOS Computational Biology, Public Library of Science, vol. 14(3), pages 1-25, March.
    5. Ryan C Williamson & Benjamin R Cowley & Ashok Litwin-Kumar & Brent Doiron & Adam Kohn & Matthew A Smith & Byron M Yu, 2016. "Scaling Properties of Dimensionality Reduction for Neural Populations and Network Models," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-27, December.
    6. Stefano Recanatesi & Gabriel Koch Ocker & Michael A Buice & Eric Shea-Brown, 2019. "Dimensionality in recurrent spiking networks: Global trends in activity and local origins in connectivity," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-29, July.
    7. Bettina Voelcker & Ravi Pancholi & Simon Peron, 2022. "Transformation of primary sensory cortical representations from layer 4 to layer 2," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Matteo Farinella & Daniel T Ruedt & Padraig Gleeson & Frederic Lanore & R Angus Silver, 2014. "Glutamate-Bound NMDARs Arising from In Vivo-like Network Activity Extend Spatio-temporal Integration in a L5 Cortical Pyramidal Cell Model," PLOS Computational Biology, Public Library of Science, vol. 10(4), pages 1-21, April.
    9. Lipovetsky, Stan, 2018. "Quantum paradigm of probability amplitude and complex utility in entangled discrete choice modeling," Journal of choice modelling, Elsevier, vol. 27(C), pages 62-73.
    10. Mark L Ioffe & Michael J Berry II, 2017. "The structured ‘low temperature’ phase of the retinal population code," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
    11. Katarína Bod’ová & Enikő Szép & Nicholas H Barton, 2021. "Dynamic maximum entropy provides accurate approximation of structured population dynamics," PLOS Computational Biology, Public Library of Science, vol. 17(12), pages 1-22, December.
    12. MohammadReza Zahedian & Mahsa Bagherikalhor & Andrey Trufanov & G. Reza Jafari, 2022. "Financial Crisis in the Framework of Non-zero Temperature Balance Theory," Papers 2202.03198, arXiv.org.
    13. Thomas Miconi & Rufin VanRullen, 2016. "A Feedback Model of Attention Explains the Diverse Effects of Attention on Neural Firing Rates and Receptive Field Structure," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-18, February.
    14. Gaëlle Desbordes & Jianzhong Jin & Chong Weng & Nicholas A Lesica & Garrett B Stanley & Jose-Manuel Alonso, 2008. "Timing Precision in Population Coding of Natural Scenes in the Early Visual System," PLOS Biology, Public Library of Science, vol. 6(12), pages 1-11, December.
    15. Yasser Roudi & Sheila Nirenberg & Peter E Latham, 2009. "Pairwise Maximum Entropy Models for Studying Large Biological Systems: When They Can Work and When They Can't," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-18, May.
    16. Nicolas Cazin & Martin Llofriu Alonso & Pablo Scleidorovich Chiodi & Tatiana Pelc & Bruce Harland & Alfredo Weitzenfeld & Jean-Marc Fellous & Peter Ford Dominey, 2019. "Reservoir computing model of prefrontal cortex creates novel combinations of previous navigation sequences from hippocampal place-cell replay with spatial reward propagation," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-32, July.
    17. Jan Weber & Anne-Kristin Solbakk & Alejandro O. Blenkmann & Anais Llorens & Ingrid Funderud & Sabine Leske & Pål Gunnar Larsson & Jugoslav Ivanovic & Robert T. Knight & Tor Endestad & Randolph F. Helf, 2024. "Ramping dynamics and theta oscillations reflect dissociable signatures during rule-guided human behavior," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    18. Pierre O. Boucher & Tian Wang & Laura Carceroni & Gary Kane & Krishna V. Shenoy & Chandramouli Chandrasekaran, 2023. "Initial conditions combine with sensory evidence to induce decision-related dynamics in premotor cortex," Nature Communications, Nature, vol. 14(1), pages 1-28, December.
    19. Maulana, Ardian & Situngkir, Hokky, 2015. "Korelasi Bebas-skala dalam Studi Geo-politik Pemilihan [Scale-free correlation within Geopolitics of Election Studies]," MPRA Paper 66351, University Library of Munich, Germany.
    20. Alireza Saeedi & Kun Wang & Ghazaleh Nikpourian & Andreas Bartels & Nikos K. Logothetis & Nelson K. Totah & Masataka Watanabe, 2024. "Brightness illusions drive a neuronal response in the primary visual cortex under top-down modulation," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.