IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/uz29n.html
   My bibliography  Save this paper

Maximum-entropy and representative samples of neuronal activity: a dilemma

Author

Listed:
  • Porta Mana, PierGianLuca

    (Norwegian University of Science and Technology)

  • Rostami, Vahid
  • Torre, Emiliano
  • Roudi, Yasser

Abstract

The present work shows that the maximum-entropy method can be applied to a sample of neuronal recordings along two different routes: (1) apply to the sample; or (2) apply to a larger, unsampled neuronal population from which the sample is drawn, and then marginalize to the sample. These two routes give inequivalent results. The second route can be further generalized to the case where the size of the larger population is unknown. Which route should be chosen? Some arguments are presented in favour of the second. This work also presents and discusses probability formulae that relate states of knowledge about a population and its samples, and that may be useful for sampling problems in neuroscience.

Suggested Citation

  • Porta Mana, PierGianLuca & Rostami, Vahid & Torre, Emiliano & Roudi, Yasser, 2018. "Maximum-entropy and representative samples of neuronal activity: a dilemma," OSF Preprints uz29n, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:uz29n
    DOI: 10.31219/osf.io/uz29n
    as

    Download full text from publisher

    File URL: https://osf.io/download/5b0538d43dff5a00131e40b1/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/uz29n?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vahid Rostami & PierGianLuca Porta Mana & Sonja Grün & Moritz Helias, 2017. "Bistability, non-ergodicity, and inhibition in pairwise maximum-entropy models," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-44, October.
    2. Elad Schneidman & Michael J. Berry & Ronen Segev & William Bialek, 2006. "Weak pairwise correlations imply strongly correlated network states in a neural population," Nature, Nature, vol. 440(7087), pages 1007-1012, April.
    3. Einat Granot-Atedgi & Gašper Tkačik & Ronen Segev & Elad Schneidman, 2013. "Stimulus-dependent Maximum Entropy Models of Neural Population Codes," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-14, March.
    4. Yasser Roudi & Sheila Nirenberg & Peter E Latham, 2009. "Pairwise Maximum Entropy Models for Studying Large Biological Systems: When They Can Work and When They Can't," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gašper Tkačik & Olivier Marre & Dario Amodei & Elad Schneidman & William Bialek & Michael J Berry II, 2014. "Searching for Collective Behavior in a Large Network of Sensory Neurons," PLOS Computational Biology, Public Library of Science, vol. 10(1), pages 1-23, January.
    2. Christian Donner & Klaus Obermayer & Hideaki Shimazaki, 2017. "Approximate Inference for Time-Varying Interactions and Macroscopic Dynamics of Neural Populations," PLOS Computational Biology, Public Library of Science, vol. 13(1), pages 1-27, January.
    3. Hideaki Shimazaki & Shun-ichi Amari & Emery N Brown & Sonja Grün, 2012. "State-Space Analysis of Time-Varying Higher-Order Spike Correlation for Multiple Neural Spike Train Data," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-27, March.
    4. Jason S Prentice & Olivier Marre & Mark L Ioffe & Adrianna R Loback & Gašper Tkačik & Michael J Berry II, 2016. "Error-Robust Modes of the Retinal Population Code," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-32, November.
    5. Montani, Fernando & Phoka, Elena & Portesi, Mariela & Schultz, Simon R., 2013. "Statistical modelling of higher-order correlations in pools of neural activity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(14), pages 3066-3086.
    6. Urs Köster & Jascha Sohl-Dickstein & Charles M Gray & Bruno A Olshausen, 2014. "Modeling Higher-Order Correlations within Cortical Microcolumns," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-12, July.
    7. Einat Granot-Atedgi & Gašper Tkačik & Ronen Segev & Elad Schneidman, 2013. "Stimulus-dependent Maximum Entropy Models of Neural Population Codes," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-14, March.
    8. Dimitri Yatsenko & Krešimir Josić & Alexander S Ecker & Emmanouil Froudarakis & R James Cotton & Andreas S Tolias, 2015. "Improved Estimation and Interpretation of Correlations in Neural Circuits," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-28, March.
    9. Cofré, Rodrigo & Cessac, Bruno, 2013. "Dynamics and spike trains statistics in conductance-based integrate-and-fire neural networks with chemical and electric synapses," Chaos, Solitons & Fractals, Elsevier, vol. 50(C), pages 13-31.
    10. Benjamin Dunn & Maria Mørreaunet & Yasser Roudi, 2015. "Correlations and Functional Connections in a Population of Grid Cells," PLOS Computational Biology, Public Library of Science, vol. 11(2), pages 1-21, February.
    11. Arno Onken & Valentin Dragoi & Klaus Obermayer, 2012. "A Maximum Entropy Test for Evaluating Higher-Order Correlations in Spike Counts," PLOS Computational Biology, Public Library of Science, vol. 8(6), pages 1-12, June.
    12. Xi, Ning & Muneepeerakul, Rachata & Azaele, Sandro & Wang, Yougui, 2014. "Maximum entropy model for business cycle synchronization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 413(C), pages 189-194.
    13. Montangie, Lisandro & Montani, Fernando, 2015. "Quantifying higher-order correlations in a neuronal pool," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 421(C), pages 388-400.
    14. Lipovetsky, Stan, 2018. "Quantum paradigm of probability amplitude and complex utility in entangled discrete choice modeling," Journal of choice modelling, Elsevier, vol. 27(C), pages 62-73.
    15. Mark L Ioffe & Michael J Berry II, 2017. "The structured ‘low temperature’ phase of the retinal population code," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
    16. Katarína Bod’ová & Enikő Szép & Nicholas H Barton, 2021. "Dynamic maximum entropy provides accurate approximation of structured population dynamics," PLOS Computational Biology, Public Library of Science, vol. 17(12), pages 1-22, December.
    17. MohammadReza Zahedian & Mahsa Bagherikalhor & Andrey Trufanov & G. Reza Jafari, 2022. "Financial Crisis in the Framework of Non-zero Temperature Balance Theory," Papers 2202.03198, arXiv.org.
    18. Gaëlle Desbordes & Jianzhong Jin & Chong Weng & Nicholas A Lesica & Garrett B Stanley & Jose-Manuel Alonso, 2008. "Timing Precision in Population Coding of Natural Scenes in the Early Visual System," PLOS Biology, Public Library of Science, vol. 6(12), pages 1-11, December.
    19. Yasser Roudi & Sheila Nirenberg & Peter E Latham, 2009. "Pairwise Maximum Entropy Models for Studying Large Biological Systems: When They Can Work and When They Can't," PLOS Computational Biology, Public Library of Science, vol. 5(5), pages 1-18, May.
    20. Maulana, Ardian & Situngkir, Hokky, 2015. "Korelasi Bebas-skala dalam Studi Geo-politik Pemilihan [Scale-free correlation within Geopolitics of Election Studies]," MPRA Paper 66351, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:uz29n. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.