IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004628.html
   My bibliography  Save this article

The Essential Complexity of Auditory Receptive Fields

Author

Listed:
  • Ivar L Thorson
  • Jean Liénard
  • Stephen V David

Abstract

Encoding properties of sensory neurons are commonly modeled using linear finite impulse response (FIR) filters. For the auditory system, the FIR filter is instantiated in the spectro-temporal receptive field (STRF), often in the framework of the generalized linear model. Despite widespread use of the FIR STRF, numerous formulations for linear filters are possible that require many fewer parameters, potentially permitting more efficient and accurate model estimates. To explore these alternative STRF architectures, we recorded single-unit neural activity from auditory cortex of awake ferrets during presentation of natural sound stimuli. We compared performance of > 1000 linear STRF architectures, evaluating their ability to predict neural responses to a novel natural stimulus. Many were able to outperform the FIR filter. Two basic constraints on the architecture lead to the improved performance: (1) factorization of the STRF matrix into a small number of spectral and temporal filters and (2) low-dimensional parameterization of the factorized filters. The best parameterized model was able to outperform the full FIR filter in both primary and secondary auditory cortex, despite requiring fewer than 30 parameters, about 10% of the number required by the FIR filter. After accounting for noise from finite data sampling, these STRFs were able to explain an average of 40% of A1 response variance. The simpler models permitted more straightforward interpretation of sensory tuning properties. They also showed greater benefit from incorporating nonlinear terms, such as short term plasticity, that provide theoretical advances over the linear model. Architectures that minimize parameter count while maintaining maximum predictive power provide insight into the essential degrees of freedom governing auditory cortical function. They also maximize statistical power available for characterizing additional nonlinear properties that limit current auditory models.Author Summary: Understanding how the brain solves sensory problems can provide useful insight for the development of automated systems such as speech recognizers and image classifiers. Recent developments in nonlinear regression and machine learning have produced powerful algorithms for characterizing the input-output relationship of complex systems. However, the complexity of sensory neural systems, combined with practical limitations on experimental data, make it difficult to apply arbitrarily complex analyses to neural data. In this study we pushed analysis in the opposite direction, toward simpler models. We asked how simple a model can be while still capturing the essential sensory properties of neurons in auditory cortex. We found that substantially simpler formulations of the widely-used spectro-temporal receptive field are able to perform as well as the best current models. These simpler formulations define new basis sets that can be incorporated into state-of-the-art machine learning algorithms for a more exhaustive exploration of sensory processing.

Suggested Citation

  • Ivar L Thorson & Jean Liénard & Stephen V David, 2015. "The Essential Complexity of Auditory Receptive Fields," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-33, December.
  • Handle: RePEc:plo:pcbi00:1004628
    DOI: 10.1371/journal.pcbi.1004628
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004628
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004628&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004628?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. James M McFarland & Yuwei Cui & Daniel A Butts, 2013. "Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs," PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-18, July.
    2. Roohollah Massoudi & Marc M Van Wanrooij & Huib Versnel & A John Van Opstal, 2015. "Spectrotemporal Response Properties of Core Auditory Cortex Neurons in Awake Monkey," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-30, February.
    3. Craig A Atencio & Christoph E Schreiner, 2012. "Spectrotemporal Processing in Spectral Tuning Modules of Cat Primary Auditory Cortex," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-15, February.
    4. Lucas Theis & Andrè Maia Chagas & Daniel Arnstein & Cornelius Schwarz & Matthias Bethge, 2013. "Beyond GLMs: A Generative Mixture Modeling Approach to Neural System Identification," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-9, November.
    5. Ross S Williamson & Maneesh Sahani & Jonathan W Pillow, 2015. "The Equivalence of Information-Theoretic and Likelihood-Based Methods for Neural Dimensionality Reduction," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-31, April.
    6. Ana Calabrese & Joseph W Schumacher & David M Schneider & Liam Paninski & Sarah M N Woolley, 2011. "A Generalized Linear Model for Estimating Spectrotemporal Receptive Fields from Responses to Natural Sounds," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-16, January.
    7. Mijung Park & Jonathan W Pillow, 2011. "Receptive Field Inference with Localized Priors," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ross S Williamson & Maneesh Sahani & Jonathan W Pillow, 2015. "The Equivalence of Information-Theoretic and Likelihood-Based Methods for Neural Dimensionality Reduction," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-31, April.
    2. James M McFarland & Yuwei Cui & Daniel A Butts, 2013. "Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs," PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-18, July.
    3. Michael A Carlin & Mounya Elhilali, 2013. "Sustained Firing of Model Central Auditory Neurons Yields a Discriminative Spectro-temporal Representation for Natural Sounds," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-18, March.
    4. Sepp Kollmorgen & Richard H R Hahnloser, 2014. "Dynamic Alignment Models for Neural Coding," PLOS Computational Biology, Public Library of Science, vol. 10(3), pages 1-19, March.
    5. Johannes Burge & Priyank Jaini, 2017. "Accuracy Maximization Analysis for Sensory-Perceptual Tasks: Computational Improvements, Filter Robustness, and Coding Advantages for Scaled Additive Noise," PLOS Computational Biology, Public Library of Science, vol. 13(2), pages 1-32, February.
    6. Lucas Theis & Andrè Maia Chagas & Daniel Arnstein & Cornelius Schwarz & Matthias Bethge, 2013. "Beyond GLMs: A Generative Mixture Modeling Approach to Neural System Identification," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-9, November.
    7. Niru Maheswaranathan & David B Kastner & Stephen A Baccus & Surya Ganguli, 2018. "Inferring hidden structure in multilayered neural circuits," PLOS Computational Biology, Public Library of Science, vol. 14(8), pages 1-30, August.
    8. Kaiser Niknam & Amir Akbarian & Kelsey Clark & Yasin Zamani & Behrad Noudoost & Neda Nategh, 2019. "Characterizing and dissociating multiple time-varying modulatory computations influencing neuronal activity," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-38, September.
    9. Julian Rossbroich & Daniel Trotter & John Beninger & Katalin Tóth & Richard Naud, 2021. "Linear-nonlinear cascades capture synaptic dynamics," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-27, March.
    10. Roohollah Massoudi & Marc M Van Wanrooij & Huib Versnel & A John Van Opstal, 2015. "Spectrotemporal Response Properties of Core Auditory Cortex Neurons in Awake Monkey," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-30, February.
    11. Peichao Li & Anupam K. Garg & Li A. Zhang & Mohammad S. Rashid & Edward M. Callaway, 2022. "Cone opponent functional domains in primary visual cortex combine signals for color appearance mechanisms," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    12. Max F Burg & Santiago A Cadena & George H Denfield & Edgar Y Walker & Andreas S Tolias & Matthias Bethge & Alexander S Ecker, 2021. "Learning divisive normalization in primary visual cortex," PLOS Computational Biology, Public Library of Science, vol. 17(6), pages 1-31, June.
    13. Mehrad Sarmashghi & Shantanu P Jadhav & Uri Eden, 2021. "Efficient spline regression for neural spiking data," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-19, October.
    14. Amir Akbarian & Kelsey Clark & Behrad Noudoost & Neda Nategh, 2021. "A sensory memory to preserve visual representations across eye movements," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    15. Jian K Liu & Tim Gollisch, 2015. "Spike-Triggered Covariance Analysis Reveals Phenomenological Diversity of Contrast Adaptation in the Retina," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-30, July.
    16. Maxim Volgushev & Vladimir Ilin & Ian H Stevenson, 2015. "Identifying and Tracking Simulated Synaptic Inputs from Neuronal Firing: Insights from In Vitro Experiments," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-31, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.