IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0258321.html
   My bibliography  Save this article

Efficient spline regression for neural spiking data

Author

Listed:
  • Mehrad Sarmashghi
  • Shantanu P Jadhav
  • Uri Eden

Abstract

Point process generalized linear models (GLMs) provide a powerful tool for characterizing the coding properties of neural populations. Spline basis functions are often used in point process GLMs, when the relationship between the spiking and driving signals are nonlinear, but common choices for the structure of these spline bases often lead to loss of statistical power and numerical instability when the signals that influence spiking are bounded above or below. In particular, history dependent spike train models often suffer these issues at times immediately following a previous spike. This can make inferences related to refractoriness and bursting activity more challenging. Here, we propose a modified set of spline basis functions that assumes a flat derivative at the endpoints and show that this limits the uncertainty and numerical issues associated with cardinal splines. We illustrate the application of this modified basis to the problem of simultaneously estimating the place field and history dependent properties of a set of neurons from the CA1 region of rat hippocampus, and compare it with the other commonly used basis functions. We have made code available in MATLAB to implement spike train regression using these modified basis functions.

Suggested Citation

  • Mehrad Sarmashghi & Shantanu P Jadhav & Uri Eden, 2021. "Efficient spline regression for neural spiking data," PLOS ONE, Public Library of Science, vol. 16(10), pages 1-19, October.
  • Handle: RePEc:plo:pone00:0258321
    DOI: 10.1371/journal.pone.0258321
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0258321
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0258321&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0258321?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ana Calabrese & Joseph W Schumacher & David M Schneider & Liam Paninski & Sarah M N Woolley, 2011. "A Generalized Linear Model for Estimating Spectrotemporal Receptive Fields from Responses to Natural Sounds," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael A Carlin & Mounya Elhilali, 2013. "Sustained Firing of Model Central Auditory Neurons Yields a Discriminative Spectro-temporal Representation for Natural Sounds," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-18, March.
    2. Ivar L Thorson & Jean LiƩnard & Stephen V David, 2015. "The Essential Complexity of Auditory Receptive Fields," PLOS Computational Biology, Public Library of Science, vol. 11(12), pages 1-33, December.
    3. James M McFarland & Yuwei Cui & Daniel A Butts, 2013. "Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs," PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-18, July.
    4. Amir Akbarian & Kelsey Clark & Behrad Noudoost & Neda Nategh, 2021. "A sensory memory to preserve visual representations across eye movements," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0258321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.