IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004425.html
   My bibliography  Save this article

Spike-Triggered Covariance Analysis Reveals Phenomenological Diversity of Contrast Adaptation in the Retina

Author

Listed:
  • Jian K Liu
  • Tim Gollisch

Abstract

When visual contrast changes, retinal ganglion cells adapt by adjusting their sensitivity as well as their temporal filtering characteristics. The latter has classically been described by contrast-induced gain changes that depend on temporal frequency. Here, we explored a new perspective on contrast-induced changes in temporal filtering by using spike-triggered covariance analysis to extract multiple parallel temporal filters for individual ganglion cells. Based on multielectrode-array recordings from ganglion cells in the isolated salamander retina, we found that contrast adaptation of temporal filtering can largely be captured by contrast-invariant sets of filters with contrast-dependent weights. Moreover, differences among the ganglion cells in the filter sets and their contrast-dependent contributions allowed us to phenomenologically distinguish three types of filter changes. The first type is characterized by newly emerging features at higher contrast, which can be reproduced by computational models that contain response-triggered gain-control mechanisms. The second type follows from stronger adaptation in the Off pathway as compared to the On pathway in On-Off-type ganglion cells. Finally, we found that, in a subset of neurons, contrast-induced filter changes are governed by particularly strong spike-timing dynamics, in particular by pronounced stimulus-dependent latency shifts that can be observed in these cells. Together, our results show that the contrast dependence of temporal filtering in retinal ganglion cells has a multifaceted phenomenology and that a multi-filter analysis can provide a useful basis for capturing the underlying signal-processing dynamics.Author Summary: Our sensory systems have to process stimuli under a wide range of environmental conditions. To cope with this challenge, the involved neurons adapt by adjusting their signal processing to the recently encountered intensity range. In the visual system, one finds, for example, that higher visual contrast leads to changes in how visual signals are temporally filtered, making signal processing faster and more band-pass-like at higher contrast. By analyzing signals from neurons in the retina of salamanders, we here found that these adaptation effects can be described by a fixed set of filters, independent of contrast, whose relative contributions change with contrast. Also, we found that different phenomena contribute to this adaptation. In particular, some cells change their relative sensitivity to light increments and light decrements, whereas other cells are influenced by a strong contrast-dependence of the exact timing of their responses. Our results show that contrast adaptation in the retina is not an entirely homogeneous phenomenon, and that models with multiple filters can help in characterizing sensory adaptation.

Suggested Citation

  • Jian K Liu & Tim Gollisch, 2015. "Spike-Triggered Covariance Analysis Reveals Phenomenological Diversity of Contrast Adaptation in the Retina," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-30, July.
  • Handle: RePEc:plo:pcbi00:1004425
    DOI: 10.1371/journal.pcbi.1004425
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004425
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004425&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stelios M. Smirnakis & Michael J. Berry & David K. Warland & William Bialek & Markus Meister, 1997. "Adaptation of retinal processing to image contrast and spatial scale," Nature, Nature, vol. 386(6620), pages 69-73, March.
    2. Michael J. Berry & Iman H. Brivanlou & Thomas A. Jordan & Markus Meister, 1999. "Anticipation of moving stimuli by the retina," Nature, Nature, vol. 398(6725), pages 334-338, March.
    3. James M McFarland & Yuwei Cui & Daniel A Butts, 2013. "Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs," PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-18, July.
    4. Toshihiko Hosoya & Stephen A. Baccus & Markus Meister, 2005. "Dynamic predictive coding by the retina," Nature, Nature, vol. 436(7047), pages 71-77, July.
    5. Gidon Felsen & Jon Touryan & Feng Han & Yang Dan, 2005. "Cortical Sensitivity to Visual Features in Natural Scenes," PLOS Biology, Public Library of Science, vol. 3(10), pages 1-1, September.
    6. Robert Gütig & Tim Gollisch & Haim Sompolinsky & Markus Meister, 2013. "Computing Complex Visual Features with Retinal Spike Times," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-15, January.
    7. Timm Lochmann & Timothy J Blanche & Daniel A Butts, 2013. "Construction of Direction Selectivity through Local Energy Computations in Primary Visual Cortex," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-13, March.
    8. Miguel Maravall & Rasmus S Petersen & Adrienne L Fairhall & Ehsan Arabzadeh & Mathew E Diamond, 2007. "Shifts in Coding Properties and Maintenance of Information Transmission during Adaptation in Barrel Cortex," PLOS Biology, Public Library of Science, vol. 5(2), pages 1-12, January.
    9. Jeffrey D Fitzgerald & Ryan J Rowekamp & Lawrence C Sincich & Tatyana O Sharpee, 2011. "Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-9, October.
    10. Donald R Cantrell & Jianhua Cang & John B Troy & Xiaorong Liu, 2010. "Non-Centered Spike-Triggered Covariance Analysis Reveals Neurotrophin-3 as a Developmental Regulator of Receptive Field Properties of ON-OFF Retinal Ganglion Cells," PLOS Computational Biology, Public Library of Science, vol. 6(10), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omer Mano & Damon A Clark, 2017. "Graphics Processing Unit-Accelerated Code for Computing Second-Order Wiener Kernels and Spike-Triggered Covariance," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-11, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johnatan Aljadeff & Ronen Segev & Michael J Berry II & Tatyana O Sharpee, 2013. "Spike Triggered Covariance in Strongly Correlated Gaussian Stimuli," PLOS Computational Biology, Public Library of Science, vol. 9(9), pages 1-12, September.
    2. Omer Mano & Damon A Clark, 2017. "Graphics Processing Unit-Accelerated Code for Computing Second-Order Wiener Kernels and Spike-Triggered Covariance," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-11, January.
    3. Jeffrey D Fitzgerald & Ryan J Rowekamp & Lawrence C Sincich & Tatyana O Sharpee, 2011. "Second Order Dimensionality Reduction Using Minimum and Maximum Mutual Information Models," PLOS Computational Biology, Public Library of Science, vol. 7(10), pages 1-9, October.
    4. James M McFarland & Yuwei Cui & Daniel A Butts, 2013. "Inferring Nonlinear Neuronal Computation Based on Physiologically Plausible Inputs," PLOS Computational Biology, Public Library of Science, vol. 9(7), pages 1-18, July.
    5. Jason S Prentice & Olivier Marre & Mark L Ioffe & Adrianna R Loback & Gašper Tkačik & Michael J Berry II, 2016. "Error-Robust Modes of the Retinal Population Code," PLOS Computational Biology, Public Library of Science, vol. 12(11), pages 1-32, November.
    6. Tristan G. Heintz & Antonio J. Hinojosa & Sina E. Dominiak & Leon Lagnado, 2022. "Opposite forms of adaptation in mouse visual cortex are controlled by distinct inhibitory microcircuits," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Lucas Theis & Andrè Maia Chagas & Daniel Arnstein & Cornelius Schwarz & Matthias Bethge, 2013. "Beyond GLMs: A Generative Mixture Modeling Approach to Neural System Identification," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-9, November.
    8. Ross S Williamson & Maneesh Sahani & Jonathan W Pillow, 2015. "The Equivalence of Information-Theoretic and Likelihood-Based Methods for Neural Dimensionality Reduction," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-31, April.
    9. Gabriel D Puccini & Maria V Sanchez-Vives & Albert Compte, 2007. "Integrated Mechanisms of Anticipation and Rate-of-Change Computations in Cortical Circuits," PLOS Computational Biology, Public Library of Science, vol. 3(5), pages 1-13, May.
    10. Miguel Maravall & Rasmus S Petersen & Adrienne L Fairhall & Ehsan Arabzadeh & Mathew E Diamond, 2007. "Shifts in Coding Properties and Maintenance of Information Transmission during Adaptation in Barrel Cortex," PLOS Biology, Public Library of Science, vol. 5(2), pages 1-12, January.
    11. Marcus H C Howlett & Robert G Smith & Maarten Kamermans, 2017. "A novel mechanism of cone photoreceptor adaptation," PLOS Biology, Public Library of Science, vol. 15(4), pages 1-28, April.
    12. Sungho Hong & Brian Nils Lundstrom & Adrienne L Fairhall, 2008. "Intrinsic Gain Modulation and Adaptive Neural Coding," PLOS Computational Biology, Public Library of Science, vol. 4(7), pages 1-11, July.
    13. John A. Gaynes & Samuel A. Budoff & Michael J. Grybko & Joshua B. Hunt & Alon Poleg-Polsky, 2022. "Classical center-surround receptive fields facilitate novel object detection in retinal bipolar cells," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    14. Federico Bolaños & Javier G. Orlandi & Ryo Aoki & Akshay V. Jagadeesh & Justin L. Gardner & Andrea Benucci, 2024. "Efficient coding of natural images in the mouse visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Matthias S Keil & Agata Lapedriza & David Masip & Jordi Vitria, 2008. "Preferred Spatial Frequencies for Human Face Processing Are Associated with Optimal Class Discrimination in the Machine," PLOS ONE, Public Library of Science, vol. 3(7), pages 1-5, July.
    16. Nicholas A Lesica & Toshiyuki Ishii & Garrett B Stanley & Toshihiko Hosoya, 2008. "Estimating Receptive Fields from Responses to Natural Stimuli with Asymmetric Intensity Distributions," PLOS ONE, Public Library of Science, vol. 3(8), pages 1-10, August.
    17. Mark L Ioffe & Michael J Berry II, 2017. "The structured ‘low temperature’ phase of the retinal population code," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-31, October.
    18. Joanna Bryson, 2008. "Embodiment versus memetics," Mind & Society: Cognitive Studies in Economics and Social Sciences, Springer;Fondazione Rosselli, vol. 7(1), pages 77-94, June.
    19. Matteo Saponati & Martin Vinck, 2023. "Sequence anticipation and spike-timing-dependent plasticity emerge from a predictive learning rule," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    20. Matthias S Keil, 2009. "“I Look in Your Eyes, Honey”: Internal Face Features Induce Spatial Frequency Preference for Human Face Processing," PLOS Computational Biology, Public Library of Science, vol. 5(3), pages 1-13, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.