IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0008001.html
   My bibliography  Save this article

Ground State Robustness as an Evolutionary Design Principle in Signaling Networks

Author

Listed:
  • Önder Kartal
  • Oliver Ebenhöh

Abstract

The ability of an organism to survive depends on its capability to adapt to external conditions. In addition to metabolic versatility and efficient replication, reliable signal transduction is essential. As signaling systems are under permanent evolutionary pressure one may assume that their structure reflects certain functional properties. However, despite promising theoretical studies in recent years, the selective forces which shape signaling network topologies in general remain unclear. Here, we propose prevention of autoactivation as one possible evolutionary design principle. A generic framework for continuous kinetic models is used to derive topological implications of demanding a dynamically stable ground state in signaling systems. To this end graph theoretical methods are applied. The index of the underlying digraph is shown to be a key topological property which determines the so-called kinetic ground state (or off-state) robustness. The kinetic robustness depends solely on the composition of the subdigraph with the strongly connected components, which comprise all positive feedbacks in the network. The component with the highest index in the feedback family is shown to dominate the kinetic robustness of the whole network, whereas relative size and girth of these motifs are emphasized as important determinants of the component index. Moreover, depending on topological features, the maintenance of robustness differs when networks are faced with structural perturbations. This structural off-state robustness, defined as the average kinetic robustness of a network's neighborhood, turns out to be useful since some structural features are neutral towards kinetic robustness, but show up to be supporting against structural perturbations. Among these are a low connectivity, a high divergence and a low path sum. All results are tested against real signaling networks obtained from databases. The analysis suggests that ground state robustness may serve as a rationale for some structural peculiarities found in intracellular signaling networks.

Suggested Citation

  • Önder Kartal & Oliver Ebenhöh, 2009. "Ground State Robustness as an Evolutionary Design Principle in Signaling Networks," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-8, December.
  • Handle: RePEc:plo:pone00:0008001
    DOI: 10.1371/journal.pone.0008001
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0008001
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0008001&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0008001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. U. Alon & M. G. Surette & N. Barkai & S. Leibler, 1999. "Robustness in bacterial chemotaxis," Nature, Nature, vol. 397(6715), pages 168-171, January.
    2. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    3. N. Barkai & S. Leibler, 1997. "Robustness in simple biochemical networks," Nature, Nature, vol. 387(6636), pages 913-917, June.
    4. Markus Kollmann & Linda Løvdok & Kilian Bartholomé & Jens Timmer & Victor Sourjik, 2005. "Design principles of a bacterial signalling network," Nature, Nature, vol. 438(7067), pages 504-507, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diana Clausznitzer & Olga Oleksiuk & Linda Løvdok & Victor Sourjik & Robert G Endres, 2010. "Chemotactic Response and Adaptation Dynamics in Escherichia coli," PLOS Computational Biology, Public Library of Science, vol. 6(5), pages 1-11, May.
    2. Nikita Vladimirov & Linda Løvdok & Dirk Lebiedz & Victor Sourjik, 2008. "Dependence of Bacterial Chemotaxis on Gradient Shape and Adaptation Rate," PLOS Computational Biology, Public Library of Science, vol. 4(12), pages 1-17, December.
    3. Silke Neumann & Linda Løvdok & Kajetan Bentele & Johannes Meisig & Ekkehard Ullner & Ferencz S Paldy & Victor Sourjik & Markus Kollmann, 2014. "Exponential Signaling Gain at the Receptor Level Enhances Signal-to-Noise Ratio in Bacterial Chemotaxis," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-11, April.
    4. Jae Kyoung Kim & Trachette L Jackson, 2013. "Mechanisms That Enhance Sustainability of p53 Pulses," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-11, June.
    5. Junjie Luo & Jun Wang & Ting Martin Ma & Zhirong Sun, 2010. "Reverse Engineering of Bacterial Chemotaxis Pathway via Frequency Domain Analysis," PLOS ONE, Public Library of Science, vol. 5(3), pages 1-8, March.
    6. Jinlong Yuan & Lei Wang & Xu Zhang & Enmin Feng & Hongchao Yin & Zhilong Xiu, 2015. "Parameter identification for a nonlinear enzyme-catalytic dynamic system with time-delays," Journal of Global Optimization, Springer, vol. 62(4), pages 791-810, August.
    7. Miri Adler & Avi Mayo & Uri Alon, 2014. "Logarithmic and Power Law Input-Output Relations in Sensory Systems with Fold-Change Detection," PLOS Computational Biology, Public Library of Science, vol. 10(8), pages 1-14, August.
    8. Deyan Luan & Michael Zai & Jeffrey D Varner, 2007. "Computationally Derived Points of Fragility of a Human Cascade Are Consistent with Current Therapeutic Strategies," PLOS Computational Biology, Public Library of Science, vol. 3(7), pages 1-13, July.
    9. Jasmin Fisher & Nir Piterman & Alex Hajnal & Thomas A Henzinger, 2007. "Predictive Modeling of Signaling Crosstalk during C. elegans Vulval Development," PLOS Computational Biology, Public Library of Science, vol. 3(5), pages 1-12, May.
    10. Jalili, Mahdi, 2011. "Error and attack tolerance of small-worldness in complex networks," Journal of Informetrics, Elsevier, vol. 5(3), pages 422-430.
    11. Kirstin Meyer & Nicholas C. Lammers & Lukasz J. Bugaj & Hernan G. Garcia & Orion D. Weiner, 2023. "Optogenetic control of YAP reveals a dynamic communication code for stem cell fate and proliferation," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    12. Gabriele Micali & Gerardo Aquino & David M Richards & Robert G Endres, 2015. "Accurate Encoding and Decoding by Single Cells: Amplitude Versus Frequency Modulation," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-21, June.
    13. Zeina Shreif & Vipul Periwal, 2014. "A Network Characteristic That Correlates Environmental and Genetic Robustness," PLOS Computational Biology, Public Library of Science, vol. 10(2), pages 1-23, February.
    14. Li, Wenyuan & Lin, Yongjing & Liu, Ying, 2007. "The structure of weighted small-world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 708-718.
    15. Guillermo Rodrigo & Santiago F Elena, 2011. "Structural Discrimination of Robustness in Transcriptional Feedforward Loops for Pattern Formation," PLOS ONE, Public Library of Science, vol. 6(2), pages 1-7, February.
    16. Dong, Gaogao & Tian, Lixin & Du, Ruijin & Fu, Min & Stanley, H. Eugene, 2014. "Analysis of percolation behaviors of clustered networks with partial support–dependence relations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 370-378.
    17. Robert J Prill & Pablo A Iglesias & Andre Levchenko, 2005. "Dynamic Properties of Network Motifs Contribute to Biological Network Organization," PLOS Biology, Public Library of Science, vol. 3(11), pages 1-1, October.
    18. Kazunari Kaizu & Hisao Moriya & Hiroaki Kitano, 2010. "Fragilities Caused by Dosage Imbalance in Regulation of the Budding Yeast Cell Cycle," PLOS Genetics, Public Library of Science, vol. 6(4), pages 1-12, April.
    19. Burton W Andrews & Tau-Mu Yi & Pablo A Iglesias, 2006. "Optimal Noise Filtering in the Chemotactic Response of Escherichia coli," PLOS Computational Biology, Public Library of Science, vol. 2(11), pages 1-12, November.
    20. Diana Clausznitzer & Gabriele Micali & Silke Neumann & Victor Sourjik & Robert G Endres, 2014. "Predicting Chemical Environments of Bacteria from Receptor Signaling," PLOS Computational Biology, Public Library of Science, vol. 10(10), pages 1-14, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0008001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.